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Abstract

Synthetic aperture radar (SAR) is a critical battlefield enabler as it provides

imagery during day or night and in all-weather conditions. SAR image resolution is a

function of the transmit signal parameters and collection time where classic measures

of resolution depend on waveform bandwidth, operating frequency and sensor flight

path. Improving resolution is challenging because of the two dimensional resolution:

down-range and cross range. Decades of research exist for the down-range dimension,

but very little exists for improving cross-range dimension.

Fine cross-range resolution requires a long collection time, which increases an

airborne sensor’s exposure to hostile forces and causes undesirable defocusing effects

from uncontrolled platform motion and moving targets in the scene. For the first time,

this research investigates techniques to improve cross-range resolution using waveform

diversity. The importance of waveform diversity has been highlighted by senior U.S.

Air Force leaders as a growing and vital part of future operational capabilities.

In this work, a novel theoretical framework is presented for using recent ad-

vances in frequency diversity arrays (FDAs). Unlike a conventional array, the FDA

simultaneously transmits a unique frequency from each element in the array. As a

result, special time and space properties of the radiation pattern are exploited to im-

prove cross-range resolution. The idealized FDA radiation pattern is compared with

and validated against a full-wave electromagnetic solver, and it is shown that the

conventional array is a special case of the FDA. A new signal model, based on the

FDA, is used to simulate SAR imagery of ideal point mass targets and the new model

is used to derive the impulse response function of the SAR system, which is rarely

achievable with other analytic methods.

This work also presents an innovative solution for using the convolution back-

projection algorithm, the gold standard in SAR image processing, and is a significant
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advantage of the proposed FDA model. The new FDA model and novel SAR system

concept of operation are shown to reduce collection time by 33 percent while achieving

a 4.5 dB improvement in cross-range resolution as compared to traditional imaging

systems.
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Frequency Diversity for

Improving Synthetic Aperture Radar Imaging

I. Introduction

1.1 Research Motivation

Synthetic aperture radar (SAR) is an active radio frequency (RF) imaging tech-

nique that utilizes signal processing to produce high quality images. SAR systems

gather information about a target area’s reflectivity when illuminated by an electro-

magnetic (EM) wave at a specific radio frequency and from a particular aspect angle.

Sequential observations of the target area, or scene, over varying aspect angles are

processed to produce an estimate of the scene’s reflectivity which is viewed similar

to a photographic image. EM waves propagate virtually unattenuated through most

atmospheric conditions enabling SAR to provide an all weather, day/night imaging

capability.

Traditional SAR theory has shown that image resolution is a function of radar

bandwidth, angular extent of collected data, and the operating frequency [29, 51]

and is independent of range. The recent emergence of frequency diversity techniques

within the arena of waveform diversity (WD) offers new prospects for SAR process-

ing. Specifically, frequency diversity (FD), defined as the use of multiple or varying

operating frequencies by the radar system, has demonstrated potential for SAR imag-

ing [20–22].

Frequency diversity can be applied to SAR applications in one of two approaches.

First, FD may be applied across the synthetic aperture baseline by varying center

frequency from collection point to collection point as in [9, 34, 40, 47]. In this case

the radar system selects an operating frequency according to some predefined ruleset.

Given a set system bandwidth, the use of multiple operating frequencies effectively

attains a larger overall bandwidth and directly improves range resolution.
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With all the potential of WD for SAR imaging, little has been done to apply

these techniques to improving resolution in the cross-range dimension. However, it is

the time required for adequate cross-range resolution that keeps collection platforms

and aircrews exposed to hostile forces. The FDA SAR processing aims to decrease this

time when personnel and equipment are in harms way. Rather than applying FD se-

quentially as above, FD is applied simultaneously at each collection point in the SAR

baseline via use of frequency diverse arrays (FDA). The authors in [2–4] demonstrate

the ability to form range-dependent beam patterns by operating radiating elements

across the physical array at different frequencies. Such frequency diverse arrays have

been successfully applied in radar to space-time adaptive processing (STAP) based

forward-looking radar scenarios using ground moving target indicator (GMTI) pro-

cessing [5].

This document establishes a generalized formulation for waveform diversity ap-

plied to SAR. The majority of the effort focused on exploiting the unique array pat-

terns generated by an FDA to improve image resolution in the cross-range dimension.

The motivation behind this approach is an attempt at synthesizing an apparent collec-

tion aperture that is longer than what is actually subtended while retaining benefits

of shorter synthetic apertures and integration times.

1.2 Research Scope and Assumptions

SAR imaging is an umbrella term that encompasses a number of specific applica-

tions including inverse synthetic aperture radar (ISAR) [51], interferometric SAR (In-

SAR) [43], spotlight SAR [12, 29], and stripmap SAR [51]. Thus, it is important

to define at the outset which specific employment of SAR is utilized. This research

considers airborne spotlight SAR and, although the models developed allow for gen-

eralization, simulations are performed for the broadside collection geometry with a

linear flight path.
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The location of the target scene relative to the radar is given by azimuth angle

θ, elevation angle ψ, and range r. It has been shown that in spotlight SAR ψ is small

and nearly constant during data collection, and θ is small and varies by only a few

degrees [29]. These conditions allow the following small angle approximations to be

used throughout the analytical development:

sin (ϕ) ≈ ϕ ,

cos (ϕ) ≈ 1 ,

tan (ϕ) ≈ ϕ . (1.1)

A number of hardware and environmental factors influence signal amplitude

and phase during data collection including transmit power, antenna efficiency, filter

design, etc. While these factors contribute to any radar pulse return, SAR image

reconstruction relies solely on target reflectivity and phase information in a scattered

pulse return. Other amplitude and phase contributions are approximately constant

over the spotlighted scene for the duration of data collection and provide no target

information. Therefore, as is customary in SAR literature, these contributions are

acknowledged during the development but not retained.

Analytical development is empirically validated through simulation. Ideal point

targets are used and it is assumed reflectivity is invariant to both aspect angle and

excitation frequency. Additionally, array pattern development and simulation assume

ideal radiators with no inter-element coupling between antenna elements. These as-

sumptions are common in SAR literature.

1.3 Document Overview

This document details the FDA SAR theory and methodology. Chapter II

provides a summary of SAR imaging to introduce terminology and establish a basis for

incorporating FDA processing. Common imaging scenarios and image reconstruction
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methods are presented. Chapter III presents the theory of FDAs. Whereas previous

analysis of FDAs was performed for one-dimensional (1-D) linear arrays, this chapter

extends the development to a two-dimensional (2-D) planar arrays. Next, Chapter IV

introduces a novel technique to produce a widebeam, wideband waveform using FDA

technology. The new FDA transmit waveform is derived and waveform amplitude,

phase, periodicity, and frequency characteristics are analyzed. Finally, Chapter V

presents the core research of applying FDA processing to SAR. The approach for

SAR processing synthesizes an apparent collection aperture that is longer than what

is actually subtended yielding superior cross-range resolution. Finally, Chapter VI

summarizes the document and proposes future research with regard to FDA and WD

applied to SAR.
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II. Synthetic Aperture Radar Imaging

Spotlight SAR imaging is introduced in this chapter. Although many introductory

texts [12,29,51] cover the material thoroughly, two major challenges in SAR literature

are the varied approach to describing the imaging problem and lack of standardized

terminology, making it difficult for the unfamiliar to grasp the concepts. This chapter

addresses these issues by establishing a novel, physically-based approach to describing

SAR.

In Section 2.1, SAR imaging is presented in a geometrical framework to em-

phasize the three-dimensional (3-D) reality of data collection. A vector construct is

used throughout the mathematical development as common across many disciplines.

Most importantly, the remainder of the document utilizes the framework established

to enable the development of SAR signal modelling and imaging within the context

of waveform diversity. Next, Section 2.2 outlines the polar format and time domain

backprojection image reconstruction algorithms. The point spread function (PSF) is

the basic metric in SAR imaging and is derived for each algorithm. It is noted that

for all the popularity of time domain backprojection, an analytical formulation for the

PSF is not readily found in literature. The theory developed in this document allows

this metric to be succinctly described. Finally, Section 2.3 reviews current research

efforts in waveform diversity and improving SAR imaging, i.e., the two main thrusts

of this research.

2.1 Background

Radar’s historical mission has been to detect, range, and track objects using

radio waves. The radar transmits an electromagnetic signal into space through an

antenna. The energy propagates until it encounters and scatters off of some target.

The term target in radar is application specific. Aircraft are targets of interest to

air traffic control radars, while in maritime operations ships are of concern. In SAR

imaging, a patch of terrain on the earth’s surface is the desired target, or scene, of

interest. A portion of the energy incident the target is scattered back towards the
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radar where it is received by the antenna. This received signal carries information

about the target. The time delay of the received signal is proportional to the round-

trip range to the target and the received power carries information of the target’s

reflectivity or radar cross-section.

One metric used to describe the effectiveness of a radar system is range resolu-

tion. Range resolution specifies the ability to distinguish, or resolve, two targets in a

radial direction from the radar. It is well-known that range resolution δx is improved

with an increase in waveform bandwidth and is given by [29,51]

δx =
c

2B
, (2.1)

where c is the speed-of-light and B is the 3 dB bandwidth. Improving range resolution

through a variety of techniques has been an area of research for decades [15].

While it is critical to know a target’s range, it is equally important to locate

a target in cross-range, i.e., the target’s angular location. Traditional radars are less

effective at performing this function. Transmitted energy propagates spherically away

from the radar. Reflected energy from two targets at the same range, but different

angular locations, will arrive back at the radar simultaneously. The radar will be

unable to discriminate between the two, yielding poor cross-range resolution. For a

given target range R, center frequency wavelength λ, and actual array (aperture) size

D, cross-range resolution δy is [29]

δy =
Rλ

D
. (2.2)

Cross-range resolution is improved with increased operating frequency (smaller λ) or

increased aperture size.

Synthetic aperture radar (SAR) is a radar modality that simultaneously at-

tempts to glean information about a target in both range and cross-range. Specifically,

SAR imaging estimates the reflectivity function that can be interpreted similar to a
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Figure 2.1: Overview of airborne spotlight SAR collection in broadside mode. The
platform traverses a linear flight path of length L over which the synthetic aperture is
formed. A series of M one-dimensional range profiles is generated at discrete points
along L. Synthetic aperture length L, or conversely the angular extent of the collected
data ∆θ, determines cross-range resolution in reconstructed image.

geospatial image. The requirement for SAR processing can be seen when considering

an imaging example. Sub-meter image resolution is often desired in military applica-

tions. A realistic airborne collection scenario may require a 40 km operational standoff

distance from the target area using an X-band radar (f = 10 GHz, λ = 0.03 m) with

a desired range resolution of δx = 0.5 m. Under these conditions, B = 300 MHz

according to Equation (2.1). To achieve equal cross-range resolution with traditional

processing, an antenna of size D = 2, 400 m from Equation (2.2) is required. This is

clearly unrealistic for airborne radar systems.

SAR processing alleviates the aperture size requirement by synthesizing a larger

aperture. Figure 2.1 illustrates a typical SAR collection geometry. The collection plat-

form with side-looking radar flies a linear path at altitude h and range Rc from scene

center while coherently transmitting and receiving pulses. The dimension perpendicu-

lar to the flight path is the range dimension while that parallel to the flight path is the

cross-range dimension. After transmitting M pulses, a series of M one-dimensional
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range profiles are generated at equally spaced collection points along the flight path

of length L. This set of points defines the synthetic aperture. The receive signals are

coherently processed as if the data was collected from an array of stationary radars.

The total angular extent subtended by the synthetic aperture is ∆θ. It has been

shown that cross-range resolution of spotlight SAR (to be discussed in Section 2.1.1)

is [29, 51]

δy =
λ

2∆θ
. (2.3)

Using the example previously mentioned, ∆θ = 0.03 rad to achieve δy = 0.5 m cross-

range resolution. With the small angle assumption sin (ϕ) ≈ ϕ, the required synthetic

aperture length is L = Rc sin (∆θ) = 1, 200 m, and the required synthetic aper-

ture length is one-half the required real aperture size. The ideals of Equations (2.1)

and (2.3) define the best case resolution. Noticeably absent in these two equations is

the range variable Rc. In theory, SAR image resolution is independent of the range

between the collection platform and scene. The limiting resolution is called the point

spread function (PSF) and is the measure of SAR image quality.

In Figure 2.1, the ground plane is the plane in which the scene is actually located.

The slant plane contains the line-of-sight (LOS) between the radar and scene. The

slant plane lies at an angle ψ with respect to the ground plane. Data collection

is performed in the slant plane and therefore SAR image reconstruction produces a

slant plane image, i.e., the 3-D target scene is projected onto the 2-D slant plane.

Throughout this document the term range refers to slant range unless specifically

identified as ground range. Additionally, all image reconstruction is performed in the

slant range. A two-dimensional ground plane image is easily produced by projecting

the generated SAR image back onto the ground plane.

2.1.1 Collection Geometries and Terminology. The popularity of SAR imag-

ing has led to many operating modes, with stripmap SAR and and spotlight SAR being

the two prominent ones. Stripmap SAR was the first operating mode developed for

SAR imaging [36, 37] and provides large area coverage with the trade-off of coarser
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Stripmap Area

Figure 2.2: Imaging geometry for stripmap mode SAR. The side-looking radar is
pointed perpendicular to the platform’s velocity vector. The antenna pattern is fixed
for the duration of the collection yielding a large coverage area. Solid circles indicate
collection locations along the synthetic aperture.

Spotlight
Area

Figure 2.3: Spotlight SAR collection geometry. The radar mainbeam is continuously
steered to illuminate a given patch of ground throughout the collection period, reduc-
ing coverage area compared to stripmap SAR but improving azimuth resolution in the
target area. Solid circles indicate collection locations along the synthetic aperture.
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cross-range resolution when compared to spotlight SAR. The imaging geometry for

stripmap SAR is depicted in Figure 2.2. The side-looking radar is pointed perpendic-

ular to the platform’s velocity vector and is fixed for the duration of the collection.

The antenna beam sweeps out a strip on the ground yielding a large coverage area.

Solid circles indicate collection locations along the synthetic aperture. The amount

of time a given target remains illuminated by the mainbeam is proportional to the

beamwidth. With stripmap SAR, the best achievable azimuth resolution is [12]

δy =
D

2
, (2.4)

while range resolution given by Equation (2.1). Thus cross-range resolution is solely

dependent upon real aperture size D. A smaller real aperture widens the main-

beam [8], illuminating targets for a longer period of time and yielding improved

cross-range resolution.

Alternatively, spotlight SAR provides finer cross-range resolution for smaller

coverage areas [39]. In the spotlight mode, the radar mainbeam is continuously steered

to illuminate a specific patch of ground throughout the collection period as shown in

Figure 2.3. This steering is performed either mechanically or electronically. All targets

in the spotlighted area are illuminated for a longer time duration relative to stripmap

SAR, which in turn improves azimuth resolution. Solid circles in the figure indicate

collection locations along the synthetic aperture. Range and cross-range resolutions

are given by Equation (2.1) and Equation (2.3) respectively. Although antenna size

D does not directly affect resolution in spotlight SAR as was the case in stripmap

mode, it does determine the radar footprint, i.e., the spotlighted area.

Within spotlight SAR, collection can either be broadside or squinted. In Fig-

ure 2.3, the synthetic aperture is centered on the scene in cross-range. This particular

collection geometry is referred to as broadside operation. Squinted operation refers

to a scenario where the synthetic aperture and scene centers are not aligned in cross-

range. With forward squint, the target area is in the direction of velocity vector, i.e.,
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Figure 2.4: The radar-centric coordinate system is used to define a location in space.
Radar boresight is along x̂. Azimuth angle θ is referenced to x̂ and is measured
positive toward ŷ. Elevation angle ψ is referenced to x̂ and is measured positive
toward ẑ.

the radar is moving toward the scene for the duration of the collection. In backward

squint the radar is moving away from the scene for the duration of the collection.

Image reconstruction is performed through signal processing of the collected

dataset, termed the phase history. The time interval required for the radar to traverse

the synthetic aperture and collect the phase history is called the coherent processing

interval (CPI). SAR processing is two-dimensional in both the range and cross-range

domains. SAR literature has accepted terminology when referring to each of the

two dimensions [51, 53]. The range domain is often referred to as fast-time because

sampling is on the order of the operating frequency. For frequencies used in radar, this

sampling requirement may be on the order of nanoseconds. The cross-range domain is

often referred to as slow-time because sampling associated with the platform motion

is on the scale of the pulse repetition interval, typically on the order of milliseconds.
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2.1.2 Radar Coordinate System. The coordinate system for the signal model

development is shown in Figure 2.4. Vectors are bold with an overbar or hat for unit

vectors. SAR systems utilize side-looking radar whereby radar boresight is normal to

the host platform velocity vector. The radar-centric coordinate system in Figure 2.4

is oriented such that the platform’s velocity vector is parallel to ŷ and the radar

boresight is along x̂. Azimuth angle θ is referenced to x̂ and is measured positive

toward ŷ. Elevation angle ψ is referenced to x̂ and is measured positive toward ẑ.

The established geometry allows the location of any coordinate to be specified

relative to the radar by its range ro, azimuth angle θo, and elevation angle ψo as

r̄o = ror̂o

= ro (x̂ cosψo cos θo + ŷ cosψo sin θo + ẑ sinψo)

= x̂ xo + ŷ yo + ẑ zo , (2.5)

where x̂, ŷ, and ẑ are the Cartesian unit vectors,

xo = ro cosψo cos θo = roκx ,

yo = ro cosψo sin θo = roκy ,

zo = ro sinψo = roκz , (2.6)

and

κx (ψo, θo) = cosψo cos θo ,

κy (ψo, θo) = cosψo sin θo ,

κz (ψo) = sinψo . (2.7)

In Equation (2.5), r̄o has magnitude ro and direction given by the unit vector

r̂o = x̂κx + ŷκy + ẑκz . (2.8)
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Figure 2.5: Radar coordinates for spotlight mode SAR operation. The radar maintains

focus on a finite target area. Vectors R and R
′

define the locations of the radar
and scene center, respectively, while r̄ defines the location of point r̄′ relative to the
radar [46].

As discussed in Section 2.1.1, the spotlight mode operates while the radar main-

tains focus on a finite target area centered at some point as it traverses the synthetic

aperture. Figure 2.5 illustrates the radar coordinate system for an airborne SAR op-

erating in spotlight mode [46]. With the radar continuously steered to a fixed point

at target scene center, r̄o varies during the CPI. It is convenient to define the radar

location along the flight path as

R (t) = x̂Rx (t) + ŷRy (t) + ẑRz (t) . (2.9)

The set of individual collection locations given by R over time defines the synthetic

aperture. Any arbitrary synthetic aperture, depicted by the dashed line l, can then
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be characterized by point-mass equations of motion

Rx (t) = Rxo + vxt+
1

2
axt

2 ,

Ry (t) = Ryo + vyt+
1

2
ayt

2 ,

Rz (t) = Rzo + vzt+
1

2
azt

2 , (2.10)

where (Rxo, Ryo, Rzo) identify the starting position, (vx, vy, vz) specifies the velocity,

and (ax, ay, az) is acceleration in the noted dimension.

In Figure 2.5, r̄′ defines the location of an arbitrary point r′ in the scene in

target-centric coordinates as

r̄′ = x̂x′ + ŷ y′ + ẑ z′ , (2.11)

and r̄ describes the location of point r′ with respect to the radar

r̄ = r̄o + r̄′ . (2.12)

Lastly, R
′
specifies the location of the target scene center with coordinate (Xc, Yc, Zc)

R
′
= x̂Xc + ŷ Yc + ẑ Zc . (2.13)

Using R
′
and R (t), the established geometry can mathematically define any spotlight

imaging geometry, i.e., broadside, forward squint, or backward squint.

The scene consists of a finite rectangular volume V centered at R
′
, with

V = [Xc −Xo, Xc +Xo]× [Yc − Yo, Yc + Yo]× [Zc, Zc + Zo] . (2.14)

Relative to scene center, the volume is bound in range by ±Xo, by ±Yo in cross-range,

in height by Zo.
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From Figure 2.5, it is seen that

r̄o (t) = R
′ −R (t)

= x̂ [Xc −Rx (t)] + ŷ [Yc −Ry (t)] + ẑ [Zc −Rz (t)] , (2.15)

where the range ro = |̄ro| is time dependent as

ro (t) =

√
[Xc −Rx (t)]2 + [Yc −Ry (t)]2 + [Zc −Rz (t)]2 . (2.16)

Equating like terms in Equation (2.5) and Equation (2.15) leads to the following

system of equations

ro (t) cosψo cos θo = Xc −Rx (t) ,

ro (t) cosψo sin θo = Yc −Ry (t) ,

ro (t) sinψo = Zc −Rz (t) , (2.17)

which can be solved to show

θo (t) = tan−1

[
Yc −Ry (t)

Xc −Rx (t)

]
, (2.18)

and

ψo (t) = sin−1

[
Zc −Rz (t)

ro (t)

]
, (2.19)

where both angles are explicitly parameterized with time. It is important to note that,

in radar, time is customarily used to parameterize equations of motion and signals

making the geometric expressions in Equation (2.16) to Equation (2.19) easy to work

with in the context of signal processing.

2.1.3 Signal Model Development. Initially, the radar is treated as stationary

and transmits a single pulse. In general, the transmit waveform s (t) is conveniently
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expressed in complex envelope notation as

s (t) = a (t) exp {j [ωot+ φ (t)]} , (2.20)

where a (t) defines the instantaneous amplitude modulation of s (t), ωo = 2πfo is the

angular frequency, and φ (t) is a function of time defining the phase modulation of

s (t). For now, a continuous wave (CW) signal is assumed making φ (t) = φo = 0.

In many radar operations, a (t) is either a square wave or constant. The normalized

transmitted radar signal is then simply

s (t) = exp (jωot) . (2.21)

After transmission, the normalized signal propagates with phase accrual as

s
(
t, k̄
)

= exp
[
j
(
ωot− k̄o · r̄

)]
, (2.22)

where k̄o is the wavevector and denotes the radar LOS to the reference path

k̄o = kor̂o , (2.23)

and wavenumber ko is given by

ko =
ωo
c

=
2π

λo
. (2.24)

For the moment, it is convenient to set r̄′ = 0 in Equation (2.12), reducing Equa-

tion (2.22) to

s
(
t, k̄
)

= exp
[
j
(
ωot− k̄o · r̄

)]
= exp

[
j
(
ωot− k̄o · r̄o

)]
= exp [jωo (t− to)] , (2.25)
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where

k̄o · r̄o = ko (x̂κx + ŷκy + ẑκz) · ro (x̂κx + ŷκy + ẑκz)

= ωo
ro
c

(
κ2
x + κ2

y + κ2
z

)
= ωoto , (2.26)

and the propagation delay to from the radar to scene center is

to =
ro
c
. (2.27)

From Equation (2.25), it is seen that s
(
t, k̄
)

is reduced from a spherical wave

travelling away from the radar to a uniform plane wave [7], but the spherical wave

is easily recovered. The phase accrued during propagation is nicely represented as a

time delay

to =

√
[x−Rx (t)]2 + [y −Ry (t)]2 + [z −Rz (t)]2

c
, (2.28)

where the coordinates x, y, z define the wave at any point in space. In the far-field,

it is customary to approximate s
(
t, k̄
)

as a uniform plane wave that is tangent to

the spherical wavefront. In Section 2.2 it will be seen that, although phase history

is collected for a 3-D scene, image reconstruction is performed in the x-y plane.

Therefore, it is appropriate to define lines of uniform phase in the two dimensional

reconstruction scene. Specifically, the slopes of these lines are of interest as they

directly relate the orientation of the plane wave relative to propagation direction.

The slope ∂x/∂y is computed by implicitly differentiating x with respect to y

in Equation (2.28). Assuming a stationary radar, i.e., eliminating time dependency

of Rx, Ry, and Rz,

D [to] = D


√

(x−Rx)
2 + (y −Ry)

2 + (z −Rz)
2

c

 , (2.29)
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where D [·] denotes a partial derivative with respect to y (∂/∂y). Simplification of

Equation (2.29) yields

0 =
D
[
(x−Rx)

2 + (y −Ry)
2 + (z −Rz)

2]
c2
√

(x−Rx)
2 + (y −Ry)

2 + (z −Rz)
2

=
1

c2ro

{
D
[
(x−Rx)

2]+D
[
(y −Ry)

2]+D
[
(z −Rz)

2]}
=

2 (x−Rx)
∂x
∂y

c2ro
+

2 (y −Ry)
∂y
∂y

c2ro
+

2 (z −Rz)
∂z
∂y

c2ro
∂x

∂y
= − (y −Ry)

(x−Rx)
− (z −Rz)

(x−Rx)

∂z

∂y
. (2.30)

In Equation (2.30) only the first term is of interest for the x-y plane and represents

the slope of the line of uniform phase. The angle θ′ this line makes with the ŷ′ axis

is the inverse tangent of the slope

θ′ = − tan−1

[
(y −Ry)

(x−Rx)

]
, (2.31)

whose magnitude at scene center y = Yc, x = Xc is the same as Equation (2.18) as

shown in Figure 2.6.

This result is intuitive because the far-field uniform plane waves, waves with

uniform amplitude and phase across the wavefront, travel normal to the radar LOS.

However, it will be shown in Chapter V that FDA SAR processing takes advantage of

non-uniform plane waves produced by an FDA. In that case, the propagating signal

exhibits a uniform phasefront and uniform amplitude wavefront which are not co-

planar. Planes of uniform amplitude are not normal to the radar LOS. This fact is a

key characteristic of the FDA waveform exploited by FDA SAR processing.

Having discussed properties of the transmitted signal, the scattered and received

signal is now considered. The propagating signal in Equation (2.22) scatters off the

scene and a portion of the scattered energy is received back at the radar at a time delay

proportional to the round-trip range. The pulse return is composed of a superposition
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Figure 2.6: Lines of equal phase are normal to the radar LOS in traditional SAR
imaging. When the radar squint angle is θo, equal phase lines lie at angle θ′ with
respect to ŷ′.

of individual returns from all the scatterers in the volume V . When considering the

scene as a continuum of scatterers, the pulse return r (t, r̄′, r̄o) is often approximated

using the Born approximation [23] as

r (t, r̄′, r̄o) =

∫
V

dr̄′ρ (r̄′)
√
Pr exp

[
j
(
ωot− 2 k̄o · r̄

)]
=

∫
V

dr̄′ρ (r̄′)
√
Pr exp

{
j
[
ωo (t− 2to)− 2 k̄o · r̄′

]}
=

√
Pr exp [jωo (t− 2to)]

∫
V

dr̄′ρ (r̄′) exp
(
−j2 k̄o · r̄′

)
, (2.32)

where ρ (r̄′) is the reflectivity function of the continuum of scatterers in the scene and

Pr is the ideal receive power [26]

Pr =
PtG

2λ2

(4π)3 r4
o

. (2.33)
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In Equation (2.33), Pt is the transmit power, G is antenna gain, λ is wavelength, and

ro is range. In SAR imaging, the value of Pr is generally not of interest. The receive

power is approximately constant across the scene and provides no target information.

Rather, phase information and target reflectivity in the integrand of Equation (2.32)

are of interest, which is why Equation (2.20) and Equation (2.22) were normalized.

The nature of SAR imaging is such that the radar samples the environment in

the fast-time and slow-time dimensions. Signal processing theory dictates sampling

requirements in order to fully capture frequency content in the signal. In fast-time

processing, it is well-known that a signal f (t) must be sampled at twice its bandwidth

in order to reconstruct f (t) from its samples. Failure to meet this criteria results in

aliasing and distortion of f (t) upon reconstruction [32,49]. Similar sampling require-

ments exist in the slow-time domain.

The radar traverses the synthetic aperture while emitting a series of pulsed wave-

forms that serve to sample the scene in slow-time. The timing between pulses is the

pulse repetition interval (PRI) whose inverse is the pulse repetition frequency (PRF).

It is shown in [29,51] that the PRI is dependent upon the scene size in cross-range, i.e.,

the value of Yo in Equation (2.14). In fast-time processing, failure to meet minimum

temporal sampling requirements results in aliasing, i.e., sampling rates are inade-

quate to accurately reconstruct a continuous time signal using discrete samples. In

the counterpart slow-time domain, sampling is performed spatially. Therefore, failure

to meet sampling requirements along the synthetic aperture results in spatial aliasing

and the scene reflectivity cannot be reconstructed with the discrete spatial samples.

When manifested in the reconstructed image, targets are not correctly located at the

proper cross-range positions. Cross-range, or slow-time, processing is often related to

Doppler sensing because of the well-known Doppler-PRI relationship [49,51,53].
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In [29], the minimum increment of azimuth angle θ between successive samples

along the synthetic aperture for broadside spotlight SAR imaging is shown to be

δθ =
λ

4Yo
. (2.34)

When θ is small, as is often the case in spotlight SAR imaging, the required maximum

distance ∆y between samples along the y-axis is shown to be

∆y ≤
λRc

4Yo
. (2.35)

With platform velocity vy along the y-axis, the minimum PRF is then

PRFmin =
vy
∆y

. (2.36)

Assuming a constant velocity, Equation (2.36) results in an equally spaced set of

collection points along the synthetic aperture. The number of pulses M transmitted

during data collection is given by

M =
L

∆y

, (2.37)

where L is the total length of the synthetic aperture shown in Figure 2.1.

2.2 Image Reconstruction

SAR imaging can be developed using linear systems theory. Data collection is

the forward problem. Given a set of discrete scatterers, which in the limiting case

is a continuum, and known input (the transmitted pulse), a deterministic output

r (t, r̄′, r̄o) is produced. This process can be represented as a transformation L that

operates on the scene reflectivity function:

r (t, r̄′, r̄o) = L{ρ (r̄′)} . (2.38)
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Image reconstruction is the inverse problem where processing aims to produce an

approximation to the reflectivity function, denoted ρ̂ (r̄′), by applying inverse trans-

formation (assuming it exists) L−1 on the compact-support phase history such that

ρ̂ (r̄′) ≈ L−1 {r (t, r̄′, r̄o)} . (2.39)

In practical terms, L−1 is the reconstruction algorithm. All reconstruction al-

gorithms have various limitations such that only an estimate (ρ̂) of the actual scene

reflectivity (ρ) is produced. Numerous frequency and time domain reconstruction al-

gorithms exist and are covered extensively in the literature [12,29,51]. Though all al-

gorithms effectively address the inverse image formation problem, each inherently has

advantages and disadvantages. Commonly used Fast Fourier Transform (FFT) based

techniques include wavefront reconstruction [51], range migration algorithm [12], and

polar reformatting [29]. The time domain backprojection and time domain correla-

tion algorithms operate directly on temporal data [51]. This section presents two

commonly used reconstruction algorithms, polar format algorithm [29] and time do-

main backprojection, for the purpose of demonstrating imaging from FDA SAR.

Section 2.1 introduced SAR for an arbitrary spotlight collection geometry (squint

or broadside) and synthetic aperture path (linear, circular, etc.). In the following dis-

cussion and the remainder of this document, discussion is emphasized for the broad-

side mode with linear synthetic aperture collection geometry. In this case, geometry

is specified by the flight path in Equation (2.9) with

Rx (t) = 0 ,

Ry (t) ∈
[
−L

2
,
L

2

]
,

Rz (t) = h , (2.40)

and scene center at (Xc, 0, 0). Additionally, the synthetic aperture length L is small

compared to range ro, making the elevation angle ψo approximately constant over the
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CPI as

ψo = tan−1

(
− h

Xc

)
. (2.41)

2.2.1 Polar Format Algorithm. Discussion of polar format algorithm (PFA)

begins with introduction of the linear frequency modulated (LFM) waveform. LFM

is the most common waveform used in general radar applications [25] and in imaging

radar [29] specifically. This waveform is comparatively simple to generate and has

desirable pulse compression characteristics, highly beneficial in SAR. Yet, it also lends

itself to a simple understanding for constructing L−1.

An LFM pulse sLFM (t) is described by [29]

sLFM (t) = rect

(
t

τc

)
exp

[
j
(
ωct+ αt2

)]
, (2.42)

where ωc is the center frequency, τc is the pulse width, and

rect (ϕ) =

 1 |ϕ| ≤ 1
2

0 else
. (2.43)

This waveform is composed of a linear phase term ωct and quadratic phase term αt2.

Because frequency is the time derivative of phase, the term 2αt increases, or ramps,

frequency linearly with time. In Equation (2.42) α is called the chirp rate. The LFM

waveform spans the radian frequency range [ωo − ατc , ωo + ατc] such that the total

bandwidth (Hertz) is

BLFM =
2ατc
2π

=
ατc
π

. (2.44)

The LFM waveform is used with the SAR collection geometry in Figure 2.7. This

waveform is discussed again in Chapter V where it is compared to the FDA waveform

developed under this research.

Figure 2.7 shows the collection geometry of Figure 2.5 viewed along y. From a

given location on the synthetic aperture, the two-way time delay τo to scene center is
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Figure 2.7: Collection geometry of Figure 2.5 viewed along the cross-range axis. The
range from the radar to scene center is ro. The additional distance to an arbitrary
scatterer is given by x′ cosψo. Figure based on development in [29].

proportional to slant range ro and is given by

τo = 2to , (2.45)

with to given in Equation (2.27). Relative to τo, the additional round-trip time τ ′ to

an arbitrary point r′ in the scene with slant range

|̄r| = ro + u , (2.46)

is a function of additional propagation distance u

τ ′ (u) =
2u

c
, (2.47)

where

u (x′) = x′ cosψo , (2.48)
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as seen in Figure 2.7. The illuminated scene extends from −Xo to Xo in the ground

plane. The corresponding slant plane ranges varies from −u1 to u1, where u1 =

Xo cosψo. Considering long standoff distances and the small scene sizes typically

encountered with spotlight SAR, the grazing angle ψo is approximated as constant

between −Xo and Xo.

The scene is composed of a continuum of scatterers characterized by complex

microwave reflectivity ρ (r̄′), which can also be written as ρ (u) from Equation (2.48),

that scales the transmitted pulse upon scattering. The pulse return r (t) is composed

of return signals from all individual scatterers in the scene and is expressed as

r (t) =

u1∫
−u1

du ρ (u) exp
(
j
{
ωc [t− τo − τ ′ (u)] + α [t− τo − τ ′ (u)]

2
})

. (2.49)

The radar receiver removes known features of the recovered signal, and in SAR is

simply a mixing operation with a chirp of the opposite ramp. This process is known

as deramping [29] where the deramp signal

exp
{
−j
[
ωc (t− τo) + α (t− τo)2]} , (2.50)

is a signal referenced to the scene center. The deramped pulse return is

rD (u) =

u1∫
−u1

du ρ (u) exp
(
j
{
ατ ′ (u)2 − τ ′ (u) [ωc + 2α (t− τo)]

})
. (2.51)

When substituting Equation (2.47) into Equation (2.51), the first term in the expo-

nential is eliminated by

ατ ′ (u)2 = α

(
2u

c

)2

=
4αu2

c2
≈ 0 , (2.52)
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given that, in practice, 4αu2 is orders of magnitude smaller than c2. The deramped

signal reduces to

rD (u) ≈
u1∫

−u1

du ρ (u) exp

(
−ju

{
2

c
[ωc + 2α (t− τo)]

})
. (2.53)

The expression in Equation (2.53) has the well-known form of a Fourier Trans-

form (FT), and, in fact, is the FT of the scene reflectivity ρ (u) with kernel exp (−j uU).

Thus, the deramped return is the FT of ρ (u)

rD (u) = F {ρ (u)} , (2.54)

where F denotes the FT. Equation (2.54) suggests that L−1 = F−1 where F−1 is

the Inverse Fourier Transform (IFT). In the strict sense, L−1 must be approximated

because of the compact support of ρ (u). Recall that rD is based on a specific range

of spatial frequencies given by [29]

2

c
(ωc − πBLFM) ≤ U ≤ 2

c
(ωc + πBLFM) , (2.55)

which can be written in the spatial frequency domain as

2kc −
∆kx

2
≤ kx ≤ 2kc +

∆kx
2

. (2.56)

Center frequency and bandwidth dictate the spatial frequencies traversed. The

set of spatial frequencies in Equation (2.56) are centered at

2ωc
c

= 2kc =
4π

λc
, (2.57)

with spectral support, or bandwidth

∆kx =
2

c
(2πBLFM) . (2.58)
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The Projection-Slice Theorem [29] is key to the PFA and is introduced next.

Consider the geometry presented in Figure 2.4 where the radar emits a wave propa-

gating along the x axis with targets in the far-field. Upon scattering and reception by

the radar, each pulse return time sample corresponds to a constant range sphere in

the y-z dimensions. These spheres in the far-field can be approximated as planes [7],

i.e., the plane wave approximation in EM theory. A given sample in the pulse return

then does not represent reflectivity at a particular point in the scene, rather it is

a composite response of integrated returns from all scatterers located on the corre-

sponding plane projected onto the x-axis. The measured reflectivity ρ (x′) is defined

by projecting the three-dimensional ρ (r̄′) into one dimension as

ρ (x′) =

∞∫∫
−∞

dy′ dz′ ρ (r̄′) . (2.59)

The key concept enabling an efficient algorithm for image reconstruction can

now be introduced. The Fourier transform of ρ (r̄′) is given by

ζ (kx, ky, kz) =

∞∫∫∫
−∞

dx′ dy′ dz′ ρ (r̄′) exp [−j (x′kx + y′ky + z′kz)] . (2.60)

Using the Projection-Slice Theorem, the FT of Equation (2.59) is identical to the one-

dimensional FT obtained by evaluating ζ (kx, ky, kz) along the kx dimension given by

∞∫
−∞

dx′ ρ (x′) exp (−jx′kx) = ζ (kx, 0, 0) . (2.61)

Both Equation (2.53) and Equation (2.61) are of the exact form and directly lead

to the fact that each deramped return signal rD (t) is a trace of ζ (kx, ky, kz). The

rotational property of FT states that if f (x′) and F (kx) are FT pairs, then a θ-rotated

version of f (x′) is a θ-rotated version of F (kx). Therefore, the angular orientation
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Figure 2.8: The set of deramped returns forms the red collection surface in the spatial
frequency domain. This data produces a slant plane image. A ground plane image is
produced by projecting the collected data onto the kx-ky plane in the Fourier domain
as shown in blue. Figure based on development in [29].

of the trace defined in Equation (2.53) in the spatial frequency domain is coincident

with the aspect angle θ from which the data is collected.

The Projection Slice Theorem is critical as it implies that image reconstruction

is possible provided a sufficient number of one-dimensional projection functions from

different viewing angles are obtained. The set of all processed returns along the

synthetic aperture creates a collection surface in the spatial frequency domain as

illustrated by the red outline in Figure 2.8. This figure represents slant plane data

collected in the broadside collection geometry.

Ideally, 2-D image reconstruction is then simply performed via a 2-D IFT

ρ̂ (r̄′) = F−1 {rD (u)} =

∞∫∫
−∞

dkx dky rD (u) exp [j (x′kx + y′ky)] . (2.62)
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Figure 2.9: Collected data samples (blue X symbols) reside on a polar raster in the
Fourier domain. To take advantage of FFT techniques, the original data is interpo-
lated onto a Cartesian grid. The reformatted data (red O symbols) is shown in the
figure. Figure based on development in [29].

An IFT of the deramped phase history produces a slant plane image. When the

collection surface is projected onto the kx-ky plane (the blue surface in Figure 2.8), a

ground plane image is formed.

The ideal image reconstruction of Equation (2.62) is not practical as the phase

history provides a compact support region over kx and ky as seen in Figure 2.8. De-

tailed analysis and implications of the compact support regions is given in [38]. Addi-

tionally, in practice, the radar receiver samples and stores the pulse returns. Thus, FT

and IFT presented above are implemented by the Discrete Fourier Transform (DFT)

and Inverse Discrete Fourier Transform (IDFT). Due to the rotational property of the

FT, the discrete data do not reside on a Cartesian grid. Instead, collected data sam-

ples (blue X symbols) in Figure 2.9 reside on a polar raster in the spatial frequency

domain. To take advantage of Inverse Fast Fourier Transform (IFFT) techniques,

this polar formatted data must first be interpolated in two dimensions onto a Carte-

sian grid. The interpolated points (red O symbols) are shown in Figure 2.9. This

interpolation process (conversion from X located to O located data) is called polar
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reformatting. Simply performing an IFFT on the collected data leads to phase errors

and causes image defocusing which becomes more pronounced as the scatterer dis-

tance increases from scene center [29]. A sufficiently robust interpolator must be used

to ensure no loss of high spatial frequency data. Once interpolation is performed, the

set of spatial frequencies ky represented in the collected data is seen in Figure 2.9 to

be

−2π∆θ

λc
≤ ky ≤

2π∆θ

λc
−kc∆θ ≤ ky ≤ kc∆θ . (2.63)

Equation (2.62) is modified to reflect compact support regions and interpolation

by [53]

ρ̂ (r̄′) =

∞∫∫
−∞

dkx dky Wx (kx)Wy (ky) I
(
kx, k̃x

)
I
(
ky, k̃y

)
× rD (u) exp [j (x′kx + y′ky)]

= L−1 [rD (u)] . (2.64)

Compact support regions in Equations (2.55) and (2.63) are represented as windows

in the spatial frequency domain as

Wx (kx) = rect

(
kx − 2kc

∆kx

)
, (2.65)

and

Wy (ky) = rect

(
ky

2kc∆θ

)
, (2.66)

respectively. Interpolation from kx to k̃x and from ky to k̃y, where (k̃x, k̃y) are rect-

angular grid points, is represented by I(kx, k̃x) and I(ky, k̃y) respectively.

Range and cross-range resolutions are completely defined by the limits of in-

tegration imposed by Equation (2.65) and Equation (2.66). In deriving the PSF,
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an single point scatter with complex reflectivity ρr̄′ is assumed in the target area.

An ideal point scatterer has uniform frequency content across kx, ky in the spatial

frequency domain and

rD (u) = F {ρ (r̄′) = ρr̄′δ (r̄′)} = ρr̄′ . (2.67)

Incorporating the sample support into the limits of integration and after interpolation,

Equation (2.64) becomes

PSF (x′, y′) = ρr̄′

2kc+
∆kx

2∫
2kc−∆kx

2

dkx exp (jx′kx)

kc∆θ∫
−kc∆θ

dky exp (jy′ky) , (2.68)

and defines the PSF. The first integral is reduced as

2kc+
∆kx

2∫
2kc−∆kx

2

dkx exp (jx′kx) =
exp (jx′kx)

jx′

∣∣∣∣2kc+ ∆kx
2

2kc−∆kx
2

. (2.69)

Substituting in the limits of integration and simplifying using Euler’s formula

exp (jϕ) = cos (ϕ) + j sin (ϕ) , (2.70)

produces the principle cut of the PSF along the range axis

PSF (x′)range =
exp (jx′2kc)

[
exp

(
jx′∆kx

2

)
− exp

(
−jx′∆kx

2

)]
jx′

= exp (jx′2kc) ∆kx sinc

(
x′

∆kx
2

)
, (2.71)

where

sinc (ϕ) =
sin (ϕ)

ϕ
. (2.72)
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The first nulls of the sinc (·) function yields the range resolution and occurs at

x′
∆kx

2
= ±π

x′
(2πBLFM)

c
= ±π

x′ = ± c

2BLFM

, (2.73)

and the result agrees with Equation (2.1).

Evaluating the second integral in Equation (2.68) produces the principle cut of

the PSF along the cross-range axis

kc∆θ∫
−kc∆θ

dky exp (jy′ky) =
exp (jy′ky)

jy′

∣∣∣∣kc∆θ
−kc∆θ

. (2.74)

Following development from Equation (2.69) to Equation (2.73) it is straightforward

to show the cross-range component of the PSF is

PSF (y′)cross−range = 2kc∆θ sinc (y′kc∆θ) , (2.75)

and that cross-range resolution agrees with Equation (2.3). The overall PSF is a

two-dimensional sinc (·) function given by the product of Equation (2.71) and Equa-

tion (2.75) is

PSF (x′, y′) = |ρr̄′| 2kc∆θ∆kxsinc

(
x′

∆kx
2

)
sinc (y′kc∆θ) , (2.76)

as only pixel magnitude is shown after image reconstruction.

The greatest advantage of the PFA and other FFT-based algorithms is speed.

Modern computing power allows for efficient computer of large IFFT’s. Unfortu-

nately, the use of FFT-based algorithms present operational challenges. The polar-

to-rectangular re-gridding operation is computationally expensive, and attainable im-

age quality is sufficient in case of relatively small bandwidths [19]. Additionally, the
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phase history must be acquired over the full synthetic aperture before processing can

begin, i.e., range and cross-range processing are coupled. Finally, FFT-based algo-

rithms are sensitive to motion errors in the flight path resulting in poor focus for

large integration angles and/or large motion errors [44]. Time domain techniques are

well suited to address these limitations and are inherently capable of incorporating

non-ideal carrier track, propagation effects, and nonstandard aperture sampling [19].

Time Domain Backprojection is one popular algorithm and is introduced next.

2.2.2 Time Domain Backprojection. The second technique presented is time

domain backprojection, simply called backprojection henceforth for brevity. Backpro-

jection is based on tomography and is widely used in the medical sciences [29, 37].

Backprojection provides distinct advantages over FFT-based algorithms. First, back-

projection is able to account for near-field spherical wavefront effects unlike many

FFT-based algorithms which rely on the far-field plane wave approximation. Sec-

ond, backprojection eliminates the two-dimensional interpolation required with FFT-

based algorithms as shown in Section 2.2.1. Instead, backprojection requires one-

dimensional time domain interpolation which is readily implemented using common

signal processing techniques [42]. Finally, while PFA is primarily implemented using

the LFM waveform, backprojection is generalized to arbitrary transmit waveforms.

It is noted that the following development of time domain backprojection is similar,

but not identical to, the convolution backprojection algorithm. The latter operates

on data in the frequency domain and utilizes a ramp filter during the backprojection

process [29].

The primary disadvantage of the backprojection algorithm is its computational

complexity [51]. Each pulse return is processed individually, as opposed to the PFA

which performs image reconstruction using the entire phase history in one step (after

interpolation). Though the serial processing of pulse returns is initially a disadvan-

tage, ironically it can be a benefit in the image formation process. With backpro-

jection, range and cross-range processing are separable and image reconstruction can
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commence immediately with the first pulse return before the entire phase history is

acquired. This fact reduces transient storage requirements and computational power

required for large IFFT’s. Additionally, backprojection can take advantage of parallel

computing whereby the phase history is divided among several processors, each form-

ing an image with a subset of data, and combining the resulting interim products into

a final image through a simple coherent summation. Recent works aim to improve

backprojection performance including faster implementation methods [14,57].

The backprojection algorithm performs range and cross-range processing inde-

pendently. Thus, it is possible to produce a single image with only range information

by performing pulse compression and backprojection with a single pulse return. Al-

ternatively, iteratively performing backprojection for each radar location R without

fast-time processing produces an image with only cross-range content.

Image reconstruction begins by defining the imaging grid in the x-y plane. This

image reconstruction grid defines points, or pixels, at which the estimated scene re-

flectivity ρ̂ (r̂′) is produced. Any point in this grid is specified by

r̂′ = x̂ x̂′ + ŷ ŷ′ . (2.77)

The first step in backprojection is range processing through pulse compression.

This step is often performed via fast-time matched filtering to maximize signal to noise

ratio (SNR) and produce a one-dimensional range profile along the radar LOS [25].

Next, this range profile is backprojected onto the reconstruction grid to isolate the

contribution from a hypothesized scatterer at each point r̂′ in the pulse return. Each

gridpoint has corresponding round-trip time delay τ̂ ′ given by

τ̂ ′ =
1

ωo
2 k̄o · (r̄o + r̂′)

= 2to +
1

ωo
2 k̄o · r̂′

= 2to +
2 r̂o · r̂′

c
, (2.78)
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Figure 2.10: In backprojection the range profile is traced back to each individual
reconstruction grid point to estimate the contribution from a scatterer at that point
in the pulse return. The final grid values in the reconstructed image are obtained by
coherently summing the backprojected response of all pulse returns.

where target specific time delay is referenced to scene center. The sample in the pulse

return closest to τ̂ ′ is selected for backprojection to r̂′. Figure 2.10 illustrates the

backprojection process for one pulse return.

Backprojection requires interpolation of complex time domain data given that

the discrete pulse return time samples do not exactly coincide with τ̂ ′. If low order

interpolation is used, high spatial frequency content is lost [44,51]. Ideal time domain

interpolation is implemented by performing a FT on the compressed pulse, zero-

padding in the frequency domain and then performing an IFT. This process produces

an ideally upsampled signal and the closest point to τ̂ ′ is selected for backprojection.

The amount of zero-padding presents a trade-off between interpolation accuracy and

computational load.

As shown in Figure 2.10, each reconstruction grid point is mapped back to a

time delay in the processed pulse return. This delay however also contains contri-

butions from other points at the same slant range. When the delayed returns from

a number of collection locations are integrated during iterative backprojection from

35



each point on the synthetic aperture, contributions from a scatterer at r̂′ add coher-

ently, while returns from other points add incoherently. Thus, the backprojection

process is repeated for all pixel locations and pulse returns. Image pixel values for

each collection location are coherently integrated for all pulse returns to produce the

estimated scene reflectivity ρ̂ (r̄′) as

ρ̂ (r̄′) =

∫
R

dR r
(
τ̂ ′,R

)
. (2.79)

The backprojection PSF is not readily defined by a single analytical formula

as fast and slow-time processing are performed independently. It will be shown that

range and cross-range resolutions are given by Equation (2.1) and Equation (2.3),

respectively. These two components of image resolution are discussed next.

Formulation of the PSF depends on slow-time processing in backprojection, i.e.,

the integration of complex values for a given reconstruction grid point across the

synthetic aperture. To begin, assume the scene consists of a single point scatterer at

r̄′ with reflectivity ρr̄′ . The pulse return for this point target from Equation (2.32) is

r (t, r̄′, r̄o) = ρr̄′

√
Pr exp [jωo (t− 2to)] exp

(
−j2 k̄o · r̄′

)
. (2.80)

In Equation (2.80), amplitude
√
Pr and phase exp [jωo (t− 2to)] are known features

of the pulse return and are removed by the receiver, reducing the pulse return to

r (t, r̄′, r̄o) = ρr̄′ exp
(
−j2 k̄o · r̄′

)
, (2.81)

where ρr̄′ is a single complex number representing the point target’s reflectivity and

2 k̄o · r̄′ = 2 ko (x̂κx + ŷκy + ẑκz) · (x̂x′ + ŷ y′ + ẑ z′)

= 2 ko (x′κx + y′κy + z′κz) , (2.82)

is target phase referenced to scene center.
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Each grid location r̂′ has associated phase, again referenced to scene center,

given by the inner product in Equation (2.78)

2 k̄o · r̂′ = 2 ko (x̂′κx + ŷ′κy) . (2.83)

During the backprojection process the time correction in Equation (2.78) can

also be presented as a phase correction, where this correction is the difference between

Equation (2.82) and Equation (2.83)

2 k̄o · (r̄′ − r̂′) = 2ko [(x′ − x̂′)κx + (y′ − ŷ′)κy + z′κz] . (2.84)

The integration of these phase corrections across the synthetic aperture, i.e., for

all θo, defines the PSF

ρ̂ (r̄′) =

∫
θo

dθoρr̄′ exp
[
−j2k̄o · (r̄′ − r̂′)

]
I (t, τ̂ ′)

= L−1 [r (t, r̄′, r̄o)] , (2.85)

where I (t, τ̂ ′) is the required time domain interpolation. Equation (2.85) is expanded

to show range and cross-range dependency as

ρr̄′

∫
θo

dθo exp [−j2ko (x′ − x̂′)κx] exp [−j2ko (y′ − ŷ′)κy] exp (−j2koz′κz) . (2.86)

It was previously assumed that elevation angle ψo is constant through the CPI, i.e.,

across θo. With κz = sinψo, the third term in the integrant of Equation (2.86) only

contributes a constant phase independent of both θo and pixel location (x̂′, ŷ′) and

can be omitted. Equation (2.86) reduces to

PSF (x̂′, ŷ′) = ρr̄′

∫
θo

dθo exp [−j2ko (x′ − x̂′)κx] exp [−j2ko (y′ − ŷ′)κy] , (2.87)
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and describes the PSF as a function of reconstruction grid locations x̂′ and ŷ′.

The range and cross-range PSFs are found by examining the respective prin-

ciple cuts of the surface described by Equation (2.87). At the target range x′ = x̂′,

Equation (2.87) is purely the cross-range PSF

PSF (ŷ′)cross−range = ρr̄′

∫
θo

dθo exp [−j2ko (y′ − ŷ′)κy] . (2.88)

A change of variables is performed to transform Equation (2.88) from and integral

over θo to an integral across pulses. As stated in Section 2.1.3 the radar transmits M

pulses at equally spaced distance ∆y across the synthetic aperture. For the moment

assume a broadside spotlight imaging geometry as shown in Figure 2.1. The scene

center in cross-range is Yc = 0 and the x and x̂′ axes in Figure 2.5 are coincident. In

this case, the cross-range collection location along the y-axis for pulse m is given by

Ry = m∆y m = −M
2
, . . . ,

M

2
, (2.89)

and from Equation (2.17), when Yc = 0,

sin θo =
−Ry

ro cosψo
= − m∆y

ro cosψo
. (2.90)

The Jacobian of the transformation is computed from

cos θo dθo = − ∆y

ro cosψo
dm

dθo = − ∆y

ro cosψo cos θo
dm

= − ∆y

Xc −Rx

dm , (2.91)

where Equation (2.17) is used in the final simplification.

Substituting Equation (2.90) and Equation (2.91) into Equation (2.88) enables

the cross-range PSF to be restated as an integral across m. After inverting the limits
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of integration to eliminate the negative in the Jacobian, the PSF is

ρr̄′
∆y

Xc −Rx

−M
2∫

M
2

dm exp

[
−j2ko (y′ − ŷ′) m∆y

ro

]
, (2.92)

resulting in

ρr̄′
∆y

Xc −Rx

exp
[
−j2ko (y′ − ŷ′) m∆y

ro

]
[
−j2ko (y′ − ŷ′) ∆y

ro

]
∣∣∣∣∣∣
−M

2

M
2

. (2.93)

Substituting in the limits of integration and simplifying using Euler’s formula allows

Equation (2.93) to be reduced to

PSF (ŷ′)cross−range = −ρr̄′
M∆y

Xc −Rx

sin
[
ko (y′ − ŷ′) M∆y

ro

]
[
ko (y′ − ŷ′) M∆y

ro

]
= −ρr̄′

L

Rc

sinc

[
ko (y′ − ŷ′) L

ro

]
, (2.94)

where M∆y = L is the synthetic aperture length from Equation (2.37) and Xc−Rx =

Rc is the ground range to scene center. From Figure 2.1 it is seen that

L

Rc

≈ tan (∆θ) ≈ ∆θ , (2.95)

and
L

ro
≈ sin (∆θ) ≈ ∆θ , (2.96)

using the small angle approximations. The cross-range PSF is finally reduced to

PSF (ŷ′)cross−range = |ρr̄′|∆θ sinc [ko (y′ − ŷ′) ∆θ] , (2.97)

where the negative sign is eliminated as pixel magnitude is shown in final image

reconstruction.

39



Simply stated, given a scatterer at cross-range location y′, Equation (2.97) pro-

vides final pixel magnitude as a function of reconstruction grid cross-range location

ŷ′ where the maximum response is at ŷ′ = y′. The cross-range resolution is found by

locating the first nulls in PSF. These locations are found by equating the argument of

the sinc (·) function in Equation (2.97) to ±π and solving for ŷ′. Allowing ko = 2π/λo

from Equation (2.24),

2π

λo
(y′ − ŷ′) ∆θ = ±π

ŷ′ = y′ ± λo
2∆θ

, (2.98)

which agrees with cross-range resolution in Equation (2.3).

The derivation of the cross-range PSF assumed broadside spotlight SAR imag-

ing. The approach is easily generalized for the forward or backward squint case by

adjusting the values for index m in Equation (2.89) to appropriately define synthetic

aperture collection locations Ry.

Setting y′ = ŷ′ in Equation (2.87) yields the range PSF

PSF (x̂′)range =

∫
θo

dθoρr̄′ exp [−j2ko (x′ − x̂′)κx] . (2.99)

With κx = cosψo cos θo, and

cos θo =
Xc −Rx

ro cosψo
, (2.100)

from Equation (2.17), Equation (2.99) reduces to

PSF (x̂′)range = ρr̄′

∆θ
2∫

−∆θ
2

dθo exp

[
−j2ko (x′ − x̂′) Xc −Rx

ro

]

= ρr̄′∆θ exp

[
−j2ko (x′ − x̂′) Xc −Rx

ro

]
= |ρr̄′|∆θ , (2.101)
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Table 2.1: Parameters used for both an LFM and simple sinusoidal pulse for the
imaging scenario in Figure 2.11.

Parameter Value
Center Frequency 10 GHz

Bandwidth 900 MHz
∆θ 5.2◦

L 450 m
Rc 5 000 m

Theoretical δx 0.167 m
Theoretical δy 0.167 m

as only pixel magnitude is shown after image reconstruction. The integrand is inde-

pendent of the variable of integration. Thus, Equation (2.101) integrates to a constant

magnitude and the backprojection algorithm provides no range information.

As stated in the introduction to backprojection, pulse compression is the first

step. The PSF envelope along the range axis is specific to transmit waveform and pulse

compression techniques. The theory of pulse compression is a fundamental principle of

radar processing and the well-known formula given by Equation (2.1) yields expected

range resolution. Backprojection relies on this basic theory for fast-time processing

and the specific pulse compression technique drives the range PSF.

An imaging scenario is now shown to compare the point spread functions of

SAR imaging using the LFM waveform and a rectangular sinusoidal pulse when back-

projection is used for image reconstruction. Center frequency and bandwidth are

held constant between the two waveforms. The parameters in Table 2.1 and imaging

geometry shown in Figure 2.11 define the collection scenario. The scene consists of

13 point targets with spacing shown, and collection parameters deliberately set to

provide equal resolution in range and cross-range, δx = δy = 0.167 m. Ideally, the

targets should appear as infetesimal points in the image reconstruction grid as shown

in Figure 2.12. However, given the compact-support phase history, the ideal is not

attainable in practice.
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Figure 2.11: Imaging scenario used to compare the point spread functions of SAR
imaging using the LFM waveform and a simple sinusoidal pulse when backprojection
is used for image reconstruction. Collection parameters are deliberately set to provide
equal resolution in range and cross-range of δx = δy = 0.167 m.
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Figure 2.12: Under ideal conditions, the point targets should appear as infetesimal
dots in the image reconstruction grid as shown. However, given the compact-support
phase history, the ideal is not attainable in practice.
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Figure 2.13: Reconstructed image of scene in Figure 2.11 with LFM collected data.
Image resolutions compare favorably with the theoretical values.

Figure 2.14: Reconstructed image of scene in Figure 2.11 with sinusoidal pulse col-
lected data. Image resolutions compare favorably with the theoretical values.
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Reconstructed SAR images using the LFM and sinusoid pulse are shown in

Figures 2.13 and 2.14, respectively, where traditional matched filtering is used for

pulse compression. Both figures show a focused SAR image. Range and cross-range

cuts of the center target, Target #6 in Figure 2.11, for both collection scenarios

are shown overlayed in Figures 2.15 and 2.16. The red dashed line in the figures

corresponds to the LFM waveform while the blue solid corresponds to the sinusoidal

pulse. As shown in Figure 2.15, the range PSF is driven by the shape of the match

filtered pulse return. A simple rectangular pulse yields the familiar triangular shape

while the LFM waveform yields the well-known sinc (·) envelope. However, the cross-

range PSFs shown in Figure 2.16 are nearly identical regardless of transmit waveform.

The sinc (·) shape agrees with the theoretical given in Equation (2.97).

2.3 Current Research Efforts

The SAR data collection and image reconstruction overview presented in this

chapter assumes a single-channel system operating at a fixed center frequency. Recent

breakthroughs in multi-channel technology [10] and new interest in the arena of wave-

form diversity offer exciting prospects for SAR applications. FDA SAR processing

developed in the upcoming chapters exploit advances in these two fields to improve

SAR image quality. This section summarizes related research in order to motivate

the upcoming development.

Extending SAR operations from a single-channel to multi-channel operation of-

fers many benefits including improved ambiguity suppression for MTI and imaging

large swaths [18, 24], and improved SNR [58]. However, the majority of literature

relating to multi-channel SAR benefits focuses on STAP and moving target indi-

cator (MTI) processing of SAR data, with a representative set of theoretical and

experimental given in [13,17,27,56].

MTI is a basic mission performed by many radar systems. Implementation of

MTI in airborne radar for detection of slow moving targets is complex as clutter
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Figure 2.15: The range PSFs for the LFM (red dashed line) and rectangular sinusoidal
pulse (blue solid line) are shown. A rectangular pulse produces the familiar triangular
shape while the LFM waveform produces the well-known sinc (·) envelope.
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Figure 2.16: The cross-range PSFs for the LFM (red dashed line) and rectangular
sinusoidal pulse (blue solid line) are shown. The cross-range PSF is independent
of transmit waveform, and the sinc (·) shape agrees with the theoretical given in
Equation (2.97).
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Doppler spectrum masks the target signal [17]. In traditional airborne MTI, this

problem is alleviated with a narrower transmit beam. However, as noted in Sec-

tion 2.1.1, a narrow beam degrades stripmap SAR image quality and would also limit

the MTI surveillance area. Additionally, a single-channel system MTI performs well

with targets with a high radar reflectivity and/or those moving at a speed sufficient

to highlight their returns from the clutter band.

The MTI detection probability is increased by use of a multi-channel system,

particularly through the use of STAP or displaced phase center antenna (DPCA).

STAP involves a two-dimensional filtering technique that exploits the relationship

between the spatial and temporal domains to improve clutter rejection [30] and en-

hance MTI performance. Alternatively, with DPCA the forward motion of the moving

antenna is compensated for by shifting the effective radiation center of the antenna

backward, so that over a few pulses the antenna is effectively stationary in space.

The clutter Doppler spectrum is greatly reduced, enhancing detection of slow moving

targets [35]. The research presented in this document aims to apply multi-channel op-

eration to enhance SAR imaging. This application has not garnered as much attention

in recent literature, though there are many potential contributions.

Extending SAR operations to multi-channel operation is a physical change to

radar hardware. A parallel extension exists in the signal processing system. SAR has

traditionally used common phase coded waveforms for imaging. The recent emergence

of waveform diversity offers new potential to radar operations. The importance of

waveform diversity has been highlighted by senior U.S. Air Force leaders [55] as a

growing and vital part of future operational capabilities. Innovative concepts like

multi-dimensional waveform encoding [31] ushers in a new generation of SAR systems

with both improved performance and flexible imaging capabilities. A single system

can provide multiple capabilities like InSAR, MTI, and hybrid SAR imaging modes

that were previously out of reach.
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Waveform diversity applications extend beyond radar applications. In fact, it is

the commercial communications industry that has led the charge in maturing these

new technologies [55]. Given the generality of waveform diversity, the research pre-

sented in this document relates specifically to frequency diversity in SAR operations.

Frequency diversity (FD) can be applied to SAR applications in one of two approaches.

First, FD may be applied across the synthetic aperture baseline by varying center fre-

quency from collection point to collection point. Alternatively, FD can be applied

simultaneously at each collection point in the SAR via use of a multi-channel system.

The most common application of frequency diversity in SAR imaging found in

literature is the synthetic bandwidth approach [9,34,40,47]. Range resolution is a func-

tion of bandwidth per Equation (2.1), with superior SAR range resolution achieved

using higher bandwidths. However, certain factors restrict system bandwidth. The

achievable maximum bandwidth is often dictated by hardware constraints and can-

not be changed. Additionally, increased bandwidth leads to a proportional increase

in thermal noise power introduced by the receiver and poses additional challenges in

wideband antenna design.

Synthetic bandwidth is an FFT-based technique where center frequency is var-

ied across the synthetic aperture. The spectral content in the deramped pulse in

Equation (2.53) is given by Equation (2.56), where center frequency and bandwidth

dictate the spatial frequencies obtained. The use of multiple center frequencies along

the synthetic aperture yields greater spectral information as compared to a single

carrier system. Figure 2.17 illustrates this approach for two center frequencies ω1 and

ω2. Setting

ω2 = ω1 + 2πBLFM , (2.102)

enables recovery of adjacent, non-overlapping regions in the spatial frequency domain.

Effective system bandwidth is twice the actual bandwidth, as clearly seen by compar-

ing Figure 2.17 and Figure 2.9, and resulting range resolution improved by a factor of

two. Although, the synthetic bandwidth approach is well studied and experimentally
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Figure 2.17: The use of multiple carrier frequencies along the synthetic aperture
yields greater spectral information as compared to a single carrier system. The two
center frequencies enables recovery of adjacent, non-overlapping regions in the spatial
frequency domain. Interpolation to the red O grid points yields approximately the
same information as a single carrier system with twice the bandwidth.

validated, it focuses on only one dimension of image resolution. The spectral content

in the cross-range dimension is unchanged, and this technique provides no benefit in

cross-range resolution. FDA SAR processing studied during this research emphasizes

resolution improvement in the cross-range dimension and offers a unique application

to frequency diversity techniques.

New antenna technologies allow a second application of frequency diversity. The

authors in [2–4] demonstrate the ability to form range-dependent beam patterns by

operating radiating elements across the physical antenna array at different frequen-

cies. These frequency diverse arrays (FDA) are a novel concept and allow FD to

be applied simultaneously at each collection point on the SAR baseline. The lim-

ited research in this area is restricted to a one-dimensional FDA pattern analysis

and verification [28, 48] and application to STAP/GMTI [6]. Given the importance

of waveform diversity and benefits offered by multi-channel systems, the FDA SAR

research presented combines the two capabilities for the first time to enhance SAR
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cross-range resolution. FDA analysis has been performed under current research at

the Air Force Institute of Technology (AFIT) as an innovative approach in radar

applications.
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III. Frequency Diverse Array Development

The development in Chapter II assumed a single channel system and antenna pat-

terns were only superficially discussed in Section 2.1.1. Many early and current SAR

systems utilize a single channel parabolic dish antenna. More recently, the trend has

been to transition to active phased array antennas [1, 11,19].

Phased array antennas offer many benefits including agile beam steering, higher

power on target, and increased reliability. Phased array radars have seen break-

throughs leading to capabilities not possible only a few years ago. Developments

in radar hardware allow miniaturization on scales not previously seen causing active

electronically scanned arrays (AESA) to be lighter in weight, smaller volume, higher

reliability and lower cost [10]. Advancements in computing power allow radar hard-

ware to actively control the many transmit/receive modules in an AESA and process

and store the sheer volume of data collected.

Many existing and proposed SAR system currently or plan to utilize phased

array antennas. Antenna patters from AESAs are well understood [8] and complex

antenna response is accounted for in SAR processing [44]. A newer concept in antenna

theory is the frequency diverse array (FDA) [2,4]. The characteristics of a FDA were

previously introduced and analyzed in [2, 4, 48], however the FDA pattern was only

completely analyzed for a 1-D linear array.

This chapter extends previous work to develop the FDA pattern for a 2-D pla-

nar array with frequency progression in both dimensions. The antenna pattern of a

waveform diverse planar array is first presented. Each channel may transmit a unique

waveform to include channel specific amplitude modulation, operating frequency, and

phase modulation. As the more general case, this model applies to a traditional phased

array antenna where each channel operates at the same center frequency and beam

steering is achieved with a linear phase progression across channels. This baseline

allows direct comparison of to the FDA pattern, where a linear frequency progression

exists across the channels.
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Figure 3.1: Radar-centric coordinate system for the planar array case. The array is
located in the ŷ-ẑ plane with the coordinate system of Figure 2.4 centered on the
reference element [25].

3.1 Planar Array Coordinate System

The geometric basis for the signal model development is depicted in Figure 3.1

for a planar array [25,46,53]. This figure extends the radar-centric coordinate system

in Figure 2.4, Section 2.1.2, from a single channel to a multi-channel system. The

array consists of P rows of N -element linear arrays located in the ŷ-ẑ plane. The linear

arrays are oriented along ŷ and stacked along ẑ. Inter-element spacing in azimuth is

dy while spacing in elevation is dz. The elements are assumed to be isotropic radiators

in this development. Additionally, the development assumes ideal radiators with no

inter-element coupling between antenna elements. These assumptions are common

in SAR literature. The coordinate system of Figure 2.4 is centered on a reference

element. By convention, this reference element is defined to be the first element to

receive a pulse return signal from a target at positive elevation and positive azimuth.
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ŷẑ

ˆ 'x

ˆ 'y
ˆ 'z

or

'r

l

npd

Target Scene
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focus on a finite target area. Vectors d̄np, r̄o, and r̄′ are used to define the locations
of the npth element, scene center, and point r′ respectively.

The pulse return from such a target to the remaining elements is therefore delayed

with respect to the reference element.

Figure 3.2 illustrates the radar coordinate system for an airborne SAR operating

in spotlight mode. This figure extends of Figure 2.5 to portray the planar array

antenna case. The reference point ro in Equation (2.5) is again chosen to be target

scene center. The dashed line l depicts the flight path while r̄′ defines an arbitrary

point r′ in the scene in target-centric coordinates. The location of the npth element

is given by d̄np in radar centric coordinates

d̄np = −ŷndy − ẑpdz, n = 0, . . . , N − 1, p = 0, . . . , P − 1 . (3.1)

Equation (2.5) and Equation (3.1) can be combined to form r̄onp from the npth

element to scene center. After inverting the direction of d̄np to point from the npth
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element to the reference element, r̄onp is

r̄onp = r̄o − d̄np . (3.2)

Finally, r̄np describes the location of point r′ with respect to the npth element

r̄np = r̄onp + r̄′

= r̄o − d̄np + r̄′ . (3.3)

3.2 Planar Array Pattern Development

In general, the npth channel transmit waveform snp (t) is given in complex en-

velope notation by

snp (t) = anp (t) exp {j [ωnpt+ φnp (t)]} , (3.4)

where anp (t) is a function of time defining the amplitude of snp (t), ωnp = 2πfnp is the

angular frequency, and φnp (t) is a function of time defining any phase modulation.

A CW signal is assumed for this discussion making φnp (t) = φo = 0 for convenience.

For practical reasons anp (t) is either a square wave or constant. The normalized

transmitted radar signal from the npth element is then simply

snp (t) = exp (jωnpt) . (3.5)

After transmission by the antenna, the signal propagates as

snp
(
t, k̄
)

= exp
[
j
(
ωnpt− k̄np · r̄np

)]
, (3.6)

where k̄np is the wavevector and denotes the radar line-of-sight to the reference path

k̄np = knpr̂
o
np , (3.7)
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and the magnitude of this vector is the wavenumber

knp =
ωnp
c

. (3.8)

In traditional array theory, the far-field approximation assumes

k̄np = knpr̂o , (3.9)

where r̂o is given by Equation (2.8). With this approximation the signal sTnp received

at point r′ due to the npth channel using Equation (3.3) is

sTnp (t, r̄′, r̄o) = exp
[
j
(
ωnpt− k̄np · r̄np

)]
= exp

{
j
[
ωnpt− k̄np ·

(
r̄o − d̄np + r̄′

)]}
= exp

{
j
[
ωnp

(
t− ro

c

)
+ k̄np · d̄np − k̄np · r̄′

]}
= exp

{
j
[
ωnp (t− to) + k̄np · d̄np − k̄np · r̄′

]}
. (3.10)

Each phase component potentially contributes a Doppler component in addition to

the time delay to in Equation (3.10).

To identify array contributions to range and Doppler induced effects, the array

factor is expressed as a superposition of all channels. The oscillatory behavior of the

signal components results in constructive and destructive interference of the electric

fields in the far-field forming the overall radiation pattern given by

sT (t, r̄′, r̄o) =
N−1∑
n=0

P−1∑
p=0

sTnp (t, r̄′, r̄o)

=
N−1∑
n=0

P−1∑
p=0

exp
{
j
[
ωnp (t− to) + k̄np · d̄np − k̄np · r̄′

]}
=

N−1∑
n=0

P−1∑
p=0

exp [jωnp (t− to)]

× exp
(
jk̄np · d̄np

)
exp

(
−jk̄np · r̄′

)
. (3.11)
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The formulation of Equation (3.11) accounts for arbitrary assignment of channel

frequencies and is the most general case of a FDA. To develop antenna patterns

used for SAR imaging, two specific planar array modalities are considered next. The

first case is the constant frequency array (CFA) where all channels operate at the

same center frequency. This modality is the standard by which most AESAs operate

today. Next, a specific case of the general FDA is considered. All channel frequencies

are related to the reference channel via a linear horizontal and/or vertical frequency

progression.

3.3 Constant Frequency Array (CFA)

This section develops the antenna pattern for a traditional CFA. The CFA is

defined here as one in which all channels operate at the same center frequency. Beam

steering is achieved by applying a linear phase progression across the aperture. With

no phase progression, the antenna beam points to broadside. However, a linear phase

progression causes the radiated electric fields to constructively sum in the far-field in

a direction off broadside resulting in an electronic scan.

With all channels operating at the same angular frequency, i.e., ωnp = ωo for all

n, p, knp in Equation (3.8) is replaced by ko where

ko =
ωo
c
, (3.12)

and k̄np in Equation (3.9) reduces to

k̄o = kor̂o . (3.13)

55



Substituting Equation (3.12) and Equation (3.13) into Equation (3.11) yields

sT (t, r̄′, r̄o)CFA =
N−1∑
n=0

P−1∑
p=0

exp [jωo (t− to)] exp
(
jk̄o · d̄np

)
exp

(
−jk̄o · r̄′

)
= exp [jωo (t− to)] exp (−jkor̂o · r̄′)

N−1∑
n=0

P−1∑
p=0

exp
(
jkor̂o · d̄np

)
= g (t, r̄′, r̄o) f (t, r̂o)CFA . (3.14)

In Equation (3.14) g (t, r̄′, r̄o) is

g (t, r̄′, r̄o) = exp [jωo (t− to)] exp (−jkor̂o · r̄′) , (3.15)

and the array factor f (t, r̂o)CFA for a CFA is

f (t, r̂o)CFA =
N−1∑
n=0

P−1∑
p=0

exp
(
jkor̂o · d̄np

)
. (3.16)

It is customary to omit the time-dependency in the array factor as the antenna is

usually treated as stationary. The dependency is retained to emphasize the synthetic

aperture’s dependence on time.

Derivation of the array factor begins with expansion of the inner product in

Equation (3.16)

r̂o · d̄np = (x̂κx + ŷκy + ẑκz) · (−ŷndy − ẑpdz)

= −ndyκy − pdzκz , (3.17)

where κx, κy, and κz were given in Equation (2.7). The expansion in Equation (3.17)

enables Equation (3.16) to be separable in n and p

f (t, r̂o)CFA =

[
N−1∑
n=0

exp (−jkondyκy)

][
P−1∑
p=0

exp (−jkopdzκz)

]
. (3.18)
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The partial sum of a geometric series for finite B

B∑
b=0

ab =
1− aB+1

1− a
, a 6= 1 (3.19)

yields a closed-form solution to each summation in Equation (3.18)

f (t, r̂o)CFA =
1− exp (−jkoNdyκy)
1− exp (−jkodyκy)

1− exp (−jkoPdzκz)
1− exp (−jkodzκz)

, (3.20)

when kodyκy 6= 2πu and kodzκz 6= 2πv for integer u, v. The first fraction in Equa-

tion (3.20) can be further simplified to be

1− exp (−jkoNdyκy)
1− exp (−jkodyκy)

=
exp

(
−jko N2 dyκy

)
exp

(
−jko 1

2
dyκy

) [exp
(
jko

N
2
dyκy

)
− exp

(
−jko N2 dyκy

)][
exp

(
jko

1
2
dyκy

)
− exp

(
−jko 1

2
dyκy

)]
= exp

[
−jko

(
N − 1

2

)
dyκy

]
sin
(
ko

N
2
dyκy

)
sin
(
ko

1
2
dyκy

) . (3.21)

Euler’s formula is used in the final simplification. Similarly, the second fraction in

Equation (3.20) can be shown to simplify to

1− exp (−jkoPdzκz)
1− exp (−jkodzκz)

= exp

[
−jko

(
P − 1

2

)
dzκz

]
sin
(
ko

P
2
dzκz

)
sin
(
ko

1
2
dzκz

) . (3.22)

Combining Equation (3.21) and Equation (3.22) yields the well-known digital

sinc (·) pattern for a CFA [8]

f (t, r̂o)CFA = exp
[
j
(
φCFAy + φCFAz

)] sin
(
ko

N
2
dyκy

)
sin
(
ko

1
2
dyκy

) sin
(
ko

P
2
dzκz

)
sin
(
ko

1
2
dzκz

) , (3.23)
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where

φCFAy = −ko
(
N − 1

2

)
dyκy ,

φCFAz = −ko
(
P − 1

2

)
dzκz . (3.24)

The composite signal from a CFA at a position r̄′ relative to r̄o is given by Equa-

tion (3.14) using Equation (3.15) and Equation (3.23).

The power pattern W (ψo, θo)CFA is the magnitude squared of Equation (3.23)

W (ψo, θo)CFA =

∣∣∣∣∣sin
(
ko

N
2
dyκy

)
sin
(
ko

1
2
dyκy

) sin
(
ko

P
2
dzκz

)
sin
(
ko

1
2
dzκz

) ∣∣∣∣∣
2

. (3.25)

It is clear that the pattern in Equation (3.25) is solely a function of azimuth and

elevation implicit in κy and κz from Equation (2.7). For a stationary radar, the power

pattern is independent of both range and time.

In Equation (3.25), the maximum field having the amplitude of |NP |2 is achieved

in the limit when
1

2
kodyκy = πu, u = 0,±1,±2, . . . , (3.26)

and
1

2
kodzκz = πv, v = 0,±1,±2, . . . . (3.27)

In this case Equation (3.25) equates in the limit to

W (ψo, θo)CFA =

∣∣∣∣sin (Nπu)

sin (πu)

sin (Pπv)

sin (πv)

∣∣∣∣2 , u, v = 0,±1,±2, . . .

= |NP |2 . (3.28)

via use of L’Hospital’s rule. Substituting κz from Equation (2.7) into Equation (3.27)

yields the maximum at elevation

ψmax = arcsin

(
2πv

kodz

)
. (3.29)
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Table 3.1: CFA parameters used to produce the antenna pattern shown in Figure 3.3
to Figure 3.5.

Parameter Value
Number Azimuth Elements (N) 9
Number Elevation Elements (P ) 9
Operating Frequency (ωo = 2πfo) 2π(10 GHz)
Azimuth Elemental Spacing (dy) λo/2 = 0.015 m
Elevation Elemental Spacing (dz) λo/2 = 0.015 m

Substituting κy from Equation (2.7) and ψmax from Equation (3.29) into Equa-

tion (3.26) yields the maximum at azimuth

θmax = arcsin

(
2πu

kody cosψmax

)
. (3.30)

For purposes of illustration, the CFA power patterns are shown in Figure 3.3

to Figure 3.5 using the parameters in Table 3.1. Using these parameters in Equa-

tion (3.29) and Equation (3.30) and observing for this scenario both arcsin terms are

only defined for the u, v = 0 case, the peak pattern response is found to occur at

ψmax = 0◦, θmax = 0◦. Figure 3.3 shows a cross-section of the CFA power pattern cut

along the y-z plane of Figure 3.1. The pattern’s dependence on azimuth and elevation

is evident. Figure 3.4 and Figure 3.5 illustrate the principal azimuth and elevation

plane cuts of the same power pattern. The principal azimuth plane is the x-z plane

along θ = 0◦. The principal elevation plane is the x-y plane along ψ = 0◦. In these

cases, for a given ψ or θ the pattern does not change as a function of range.

3.4 Frequency Diverse Array (FDA)

Having developed the antenna pattern for a CFA, focus now turns to a frequency

diverse array (FDA) where all channels do not necessarily operate at the same center

frequency. In general, an FDA may have an arbitrary assignment of channel fre-

quencies. Different schemes can be used to assign these frequencies depending on the

radar’s intended purpose.
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Figure 3.3: Cross-section of CFA power pattern for a 9 × 9 array cut along the y-z
plane. The pattern’s dependence on azimuth and elevation is evident.

FDA SAR processing takes advantage of the unique waveform properties ob-

tained when a linear frequency progression is applied across the planar array. These

characteristics were previously introduced and analyzed in [2, 4, 48] and showed po-

tential for applications in SAR imaging [20–22]. Under this mode of operation, the

antenna continuously scans in range, azimuth, and elevation without the use of phase

shifters. The scanning is solely attributed to the progressive frequency shift between

antenna channels. Through the remainder of this document, the term FDA is used

to denote the general FDA in the specific case of channel frequency assignment based

on linear frequency progression.

Previously in [4, 5, 48] the FDA pattern was only completely analyzed for an

N×1 1-D linear array. Additionally, in [5] a linear FDA is applied to the radar STAP

GMTI problem and in [3] other applications are proposed, though the time varying

nature of the pattern is not addressed in either. This chapter considers an N × P
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Figure 3.4: Cross-section of CFA power pattern for a 9 × 9 array in the principal
azimuth plane. For a given elevation angle, the CFA pattern does not change as a
function of range.

Figure 3.5: Cross-section of CFA power pattern for a 9 × 9 array in the principal
elevation plane. For a given azimuth angle, the CFA pattern does not change as a
function of range.
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2-D planar array with frequency progression along both dimensions and identifies the

conditions under which the resultant analytical patterns are valid.

3.4.1 FDA Frequency Progression. The FDA pattern derivation follows the

procedure used for CFA radars in Section 3.3. The distance from each channel to a

point in the target scene is broken up into the distance from the reference element

to that point, and an incremental path length difference between the reference ele-

ment and all other array channels. With the linear frequency progression constraint,

the reference element is set to some base frequency ωo. Next, a linear incremental

frequency progression ∆ωy is inserted horizontally across the array while a linear in-

cremental frequency progression ∆ωz is inserted vertically. Thus, ωnp is the operating

frequency of channel np given by

ωnp = ωo + n∆ωy + p∆ωz, n = 0, . . . , N − 1, p = 0, . . . , P − 1 . (3.31)

The quantities ∆ωy and ∆ωz can either be either positive or negative. As expected

this selection effects antenna pattern and waveform properties and these effects are

exploited in the FDA SAR processing.

The FDA is conceptually similar to a stepped-frequency waveform whereby a

group of M monochromatic pulses are transmitted sequentially in time. The first

pulse has frequency ωo and subsequent pulse each have a an incremental frequency

progression of ∆ω [53]. The frequency of pulse m is then

ωm = ωo +m∆ω, m = 0, . . . ,M − 1 . (3.32)

Alternatively, frequency within a single pulse is stepped during equal subsections,

or chips, of the total pulse width. In either case, the difference between stepped-

frequency waveform and FDA is that in the first case the frequency progression is

applied temporally while in the latter it is applied spatially.
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Development of the FDA pattern begins with the radiation pattern of a generic

planar array given in Equation (3.11). With frequency diversity, the channel-dependent

wavenumber in Equation (3.8) and wavevector in Equation (3.9) are

knp =
ωnp
c

=
ωo + n∆ωy + p∆ωz

c

= ko + n∆ky + p∆kz , (3.33)

and

k̄np = knpr̂o

= (ko + n∆ky + p∆kz) r̂o , (3.34)

where ∆ky and ∆kz are ∆ωy/c and ∆ωz/c respectively. The composite signal received

at r̄′ was given in Equation (3.11) and is repeated here for convenience

sT (t, r̄′, r̄o) =
N−1∑
n=0

P−1∑
p=0

exp [jωnp (t− to)]

× exp
(
jk̄np · d̄np

)
exp

(
−jk̄np · r̄′

)
. (3.35)

In the following simplification of Equation (3.35) for the FDA case, only the phase

terms are shown for clarity. The product of the three complex exponentials gives a

resultant angle of

arg [sT (t, r̄′, r̄o)FDA] = ωnp (t− to) + k̄np · d̄np − k̄np · r̄′ . (3.36)

63



Substituting Equation (3.17) and Equation (3.31) to Equation (3.34) into Equa-

tion (3.36) gives

ωnp (t− to) + k̄np · d̄np − k̄np · r̄′

= (ωo + n∆ωy + p∆ωz) (t− to) + (ko + n∆ky + p∆kz) r̂o · d̄np

− (ko + n∆ky + p∆kz) r̂o · r̄′

= (ωo + n∆ωy + p∆ωz) (t− to)

+ (ko + n∆ky + p∆kz) (−ndyκy − pdzκz)

− (ko + n∆ky + p∆kz) r̂o · r̄′

= ωo (t− to)− kor̂o · r̄′

+n∆ωy (t− to)− nkodyκy − n∆kyr̂o · r̄′

+p∆ωz (t− to)− pkodzκz − p∆kz r̂o · r̄′

−n2∆kydyκy − np∆kydzκz

−p2∆kzdzκz − pn∆kzdyκy . (3.37)

The goal of this development is to derive a closed-form solution for the FDA

power pattern similar to that derived for the CFA in Equation (3.25). The fact

that all the CFA pattern phase terms were both linear and separable in n and p in

Equation (3.18), enabled use of Equation (3.19) to arrive at a closed-form solution.

This is not the case for the last four terms in Equation (3.37), two of which are

quadratic and two are not separable in n and p and no further simplifications are

possible.

It is possible to define specific conditions under which phase contributions form

these terms are negligible allowing formulation of a closed-form solution. To this end,

a physical description of each phase term in Equation (3.37) is now given. The channel

frequency relationship given in Equation (3.31) enables the total phase accrual of a

signal transmitted by any channel propagated to scene center to be referenced to ωo.
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Considering only an N ×1 horizontal linear array, the cumulative phase accrual

from the nth element operating at frequency ωn to far-field target can be broken down

into four components. First, the overall path length from the nth element to the

target is composed of the path length from the nth element to the reference element

and the path length from the reference element to the target. Second, given that

ωn = ωo + n∆ωy, cumulative phase accrual over each of the two distances is given

in terms of phase due to ωo plus phase due to n∆ωy. The four components that

contribute cumulative phase accrual are then:

• ωo (t− to) is the cumulative phase accrual over the path length from the refer-

ence element to scene center due to base frequency ωo.

• n∆ωy (t− to) is the additional phase accrual over the path length from the refer-

ence element to scene center attributed to the incremental horizontal frequency

progression.

• nkodyκy is the cumulative phase accrual over the path length from the reference

element to the nth channel due to base frequency ωo.

• n2∆kydyκy is the additional phase accrual over the path length from the ref-

erence element to the nth channel attributed to the incremental horizontal fre-

quency progression.

Phase contributions from this last term is one of the four that should be bounded in

order to simplify Equation (3.37).

Next, a 1× P vertical linear array is considered. The cumulative phase accrual

from the pth element operating at a frequency ωp to a far-field target can be broken

down into four components as above. First, the overall path length from the pth

element to the target is composed of the path length from the pth element to the ref-

erence element and the path length from the reference element to the target. Second,

given that ωp = ωo + p∆ωz, cumulative phase accrual over each of the two distances

is given in terms of phase due to ωo plus phase due to p∆ωz. The four components

that contribute cumulative phase accrual are then:
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• ωo (t− to) is the cumulative phase accrual over the path length from the refer-

ence element to scene center due to base frequency ωo as above.

• p∆ωz (t− to) is the additional phase accrual over the path length from the

reference element to scene center attributed to the incremental vertical frequency

progression.

• pkodzκz is the cumulative phase accrual over the path length from the reference

element to the pth channel due to base frequency ωo.

• p2∆kzdzκz is the additional phase accrual over the path length from the refer-

ence element the pth channel attributed to the incremental vertical frequency

progression.

Phase contributions from this last term is the second of four that should be bounded

in order to simplify Equation (3.37).

Consideration now turns to an N ×P planar array. Having accounted for phase

due to frequency progression in each dimension individually, focus now turns to what

effect frequency progression in one dimension has on the other. The cross-terms that

give phase accrual due to frequency diversity over the path length from the reference

element to the npth are:

• pn∆kzdyκy accounts for the additional phase accrual horizontally across the

array due to the vertical frequency progression.

• np∆kydzκz accounts for the additional phase accrual vertically down the array

due to the horizontal frequency progression.

Phase contributions from these two terms are the last of four that should be bounded

in order to simplify Equation (3.37). In Equation (3.37), the three remaining terms

kor̂o · r̄′, n∆kyr̂o · r̄′, and p∆kz r̂o · r̄′ account for the additional phase accrual for

observation point r′. Focus now turns to the quadratic and nonseparable terms that

should be bounded.

66



The transmitted signal from each channel is a simple sinusoid as shown in Equa-

tion (3.5). Two sinusoids of the same frequency interfere perfectly constructively when

the relative phase between them is an even multiple of π and interfere perfectly de-

structively when the relative phase is an odd multiple of π. If the phase contributions

from the quadratic terms were limited to a negligible value, these terms could be

omitted in further analysis.

As a general rule, uncompensated quadratic phase contributions of less than

±π/4 are acceptable [12, 29]. Within this limit, the transmitted signal from the

reference element and the npth channel still interfere constructively. Thus, quadratic

phase terms can be neglected when their cumulative phase contributions meet the

criteria

n2∆kydyκy + np∆kydzκz + p2∆kzdzκz + pn∆kzdyκy < ±
π

4
. (3.38)

The phase error in Equation (3.38) is most severe at channel (N − 1), (P − 1),

i.e., the channel furthest from the reference element. Considering the NP th channel

yields a more conservative restriction and simplifies analysis. With this consideration,

Equation (3.38) becomes

N2∆kydyκy +NP∆kydzκz + P 2∆kzdzκz + PN∆kzdyκy < ±
π

4
. (3.39)

In Equation (3.39) no restrictions are placed on the values of κy and κz, and

therefore on θ or ψ, as typical radars scan a wide extent in azimuth and elevation.

This consideration is next incorporated. Both κy and κz from Equation (2.7) are

individually maximized to a value of ±1. However, it is noted that κz is maximum

at ψo = ±π/2, at which point κy = 0. Additionally, κy is maximized at ψo = 0, θo =

±π/2 at which point κz = 0. Assuming both κy and κz can simultaneously achieve

their maximum value (κy = κz = 1) provides the most conservative restriction

N2∆kydy +NP∆kydz + P 2∆kzdz + PN∆kzdy < ±
π

4
. (3.40)
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For set elemental spacing dy and dz, the restriction in Equation (3.40) limits the array

size and/or frequency progression allowed across the physical aperture under which

the remaining derivation is valid.

With the assumption the restriction in Equation (3.40) holds, the quadratic

phase terms are negligible and Equation (3.37) reduces to

ωo (t− to)− kor̂o · r̄′

+n∆ωy (t− to)− nkodyκy − n∆kyr̂o · r̄′

+p∆ωz (t− to)− pkodzκz − p∆kz r̂o · r̄′ , (3.41)

and Equation (3.35) is separable in n and p

sT (t, r̄′, r̄o)FDA = exp [jωo (t− to)] exp (−jkor̂o · r̄′)

×
N−1∑
n=0

exp {jn [∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]}

×
P−1∑
p=0

exp {jp [∆ωz (t− to)− kodzκz −∆kz r̂o · r̄′]}

= g (t, r̄′, r̄o) f (t, r̄′, r̄o)FDA , (3.42)

where g (t, r̄′, r̄o) is the same as the CFA case in Equation (3.15). The array factor

f (t, r̄′, r̄o)FDA for a FDA is

f (t, r̄′, r̄o)FDA =
N−1∑
n=0

exp {jn [∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]}

×
P−1∑
p=0

exp {jp [∆ωz (t− to)− kodzκz −∆kz r̂o · r̄′]}

=
N−1∑
n=0

exp (jnΘ)
P−1∑
p=0

exp (jpΨ) , (3.43)

where

Θ (t, r̄′, r̄o) = ∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′ , (3.44)
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and

Ψ (t, r̄′, r̄o) = ∆ωz (t− to)− kodzκz −∆kz r̂o · r̄′ . (3.45)

Having reduced the FDA array factor to the same form as Equation (3.18), the deriva-

tion in Equation (3.19) to Equation (3.23) is used to simplify Equation (3.43) to

f (t, r̄′, r̄o)FDA = exp
[
j
(
φFDAy + φFDAz

)] sin
(
N
2

Θ
)

sin
(

1
2
Θ
) sin

(
P
2

Ψ
)

sin
(

1
2
Ψ
) , (3.46)

where

φFDAy =

(
N − 1

2

)
Θ ,

φFDAz =

(
P − 1

2

)
Ψ . (3.47)

The FDA power pattern is the magnitude of Equation (3.46) squared

W (ψo, θo, t, r̄
′, r̄o)FDA =

∣∣∣∣∣sin
(
N
2

Θ
)

sin
(

1
2
Θ
) sin

(
P
2

Ψ
)

sin
(

1
2
Ψ
) ∣∣∣∣∣

2

. (3.48)

Unlike Equation (3.25) in the CFA case, the FDA pattern in Equation (3.48) is

no longer solely a function of azimuth and elevation. Due to the time-dependency in

Equations (3.44) and (3.45), the power pattern for the FDA can only be fully specified

for a given instant in time. Additionally, as will be shown in Section 3.4.2, the FDA

beam sweeps across all θ, ψ as a function of time and that this scanning does not

change as a function of array size, i.e., N and P .

An analytic model and constraints to describe the FDA antenna beam has now

been established. Next, the dynamic nature is analyzed in order to better understand

how an FDA illuminates the environment.

3.4.2 FDA Pattern Analysis. The authors in [48] present a general analysis

of a linear FDA showing a periodic modulated pattern in range, angle, and time. This

section expands the analysis for a planar FDA.

69



As in the case for the CFA in Equation (3.25), the maximum field in Equa-

tion (3.48) having the amplitude of |NP |2 is achieved when

1

2
Θ = πu

1

2
[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′] = πu, u = 0,±1, . . . , (3.49)

and

1

2
Ψ = πv

1

2
[∆ωz (t− to)− kodzκz −∆kz r̂o · r̄′] = πv, v = 0,±1, . . . , (3.50)

are simultaneously satisfied. Recalling range r is inherent in propagation time to and

ψ, θ are inherent in κy, κz, the conditions in Equation (3.49) and Equation (3.50)

reveal that at a fixed time infinitely many unique (r, ψ, θ) triplets exist to satisfy the

conditions above. Similarly, at a fixed range infinitely many unique (t, ψ, θ) triplets

exist where Equation (3.48) reaches to its maximum.

Setting r̄′ = 0 for generality, and solving both Equations (3.49) and (3.50) for

time t yields

t =
2π

∆ωy
u+

kodyκy
∆ωy

+ to

=
1

∆fy
u+

kodyκy
∆ωy

+ to , (3.51)

and similarly

t =
1

∆fz
v +

kodzκz
∆ωz

+ to . (3.52)

Both Equations (3.51) and (3.52) show the periodicity of the antenna patten in time.

For a fixed location in range, azimuth angle, and elevation angle the horizontal fre-

quency progression causes that location to be illuminated with a period of 1/∆fy.

Similarly, the vertical frequency progression causes the point to be illuminated with a
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Table 3.2: FDA parameters used to produce the array pattern shown in Figure 3.6 to
Figure 3.9.

Parameter Value
Number Azimuth Elements (N) 9
Number Elevation Elements (P ) 9

Base Operating Frequency (ωo = 2πfo) 2π(10 GHz)
Azimuth Elemental Spacing (dy) λo/2 = 0.015 m
Elevation Elemental Spacing (dz) λo/2 = 0.015 m

Azimuth Frequency Progression (∆ωy = 2π∆fy) 2π(1.5 kHz)
Elevation Frequency Progression (∆ωz = 2π∆fz) 2π(−1 kHz)

period of 1/∆fz. Therefore, the maximum power on the point will occur in time when

the two scanning periods coincide, i.e., when Equation (3.51) and Equation (3.52) are

true simultaneously. Both scan periods are dependent only on frequency progression

and not on individual channel frequencies.

Additionally, Equation (3.49) and Equation (3.50) can be used to find the lo-

cation(s) in azimuth and elevation where the antenna pattern is at peak power when

time and range are held constant. Substituting κz from Equation (2.7) into Equa-

tion (3.50), with r̄′ = 0, yields the maximum at elevation ψmax where

1

2
[∆ωz (t− to)− kodz sinψmax] = πv

ψmax = sin−1

[
∆ωz (t− to)− 2πv

kodz

]
. (3.53)

It is straightforward to show that substituting κz from Equation (2.7) and ψmax from

Equation (3.53) into Equation (3.49) yields the maximum at azimuth θmax where

1

2
[∆ωy (t− to)− kody cosψmax sin θmax] = πu

θmax = sin−1

[
∆ωy (t− to)− 2πu

kody cosψmax

]
. (3.54)

The power pattern for an FDA is shown in Figure 3.6 to Figure 3.9 using the

parameters in Table 3.2. Figure 3.6 shows a cross-section of the power pattern for the
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FDA cut along the y-z plane of Figure 3.1 at time t = 0 sec. At this time instant the

antenna is steered to ψ = 0◦, θ = 0◦ and is identical to the CFA pattern in Figure 3.3.

The pattern’s dependence on azimuth and elevation is evident. Figure 3.7 shows the

same cross-section at t = 250µsec. While the pattern is still dependent upon azimuth

and elevation, the time dependency introduced by the frequency progression caused an

electronic scan to ψ = 30◦, θ = −60◦, and can be shown to agree with Equation (3.53)

and Equation (3.54).

Figure 3.8 and Figure 3.9 illustrate the power pattern at t = 0 sec along the

principal azimuth and elevation planes respectively. In both cases, the patterns are

no longer independent of range as in the CFA case. The negative vertical frequency

progression ∆ωz in Table 3.2 causes the pattern to scan toward positive elevation as

seen in Figure 3.8. Similarly, the positive horizontal frequency progression ∆ωy in

Table 3.2 causes the pattern to scan toward negative azimuth as seen in Figure 3.9.

Additionally these figures show that the greater the frequency progression, the more

drastic change in pattern with range.

3.4.3 FDA Pattern Verification. It is important to verify the analytical

FDA model developed as it forms the basis for FDA SAR processing. The following

verification is performed both analytically and empirically. It will be shown that

the FDA pattern reverts to a CFA pattern when frequency progression across both

dimensions is removed. Additionally, the planar FDA pattern reverts to the linear

FDA pattern previously presented in [48] when the number of elevation channels is

P = 1. Finally, results from a high fidelity EM software simulation are used to

empirically verify the models.

The array factors for the CFA and FDA are given in Equation (3.23) and Equa-

tion (3.46), respectively. The limiting case of an FDA with no frequency progressing

is the CFA. With ∆ωy = ∆ωz = 0 (and therefore ∆ky = ∆kz = 0), Equation (3.46)

should reduce to Equation (3.23). The phase terms in Equation (3.47) reduce to
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Figure 3.6: Cross-section of FDA power pattern for a 9 × 9 array cut along the y-z
plane at t = 0 sec. The pattern’s dependence on azimuth and elevation is evident.

Figure 3.7: Cross-section of FDA power pattern for a 9 × 9 array cut along the y-
z plane at t = 250µsec. At this time instant the frequency progression caused an
electronic scan to ψ = 30◦, θ = −60◦.
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Figure 3.8: Cross-section of FDA power pattern for a 9 × 9 array cut along the x-z
plane for θ = 0◦ at t = 0 sec. The negative vertical frequency progression ∆ωz causes
the pattern to scan toward positive elevation.

Figure 3.9: Cross-section of FDA power pattern for a 9 × 9 array cut along the x-y
plane for ψ = 0◦ at t = 0 sec. The positive horizontal frequency progression ∆ωy
causes the pattern to scan toward negative azimuth.
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Equation (3.24) when frequency progression is eliminated

φFDAy =

(
N − 1

2

)
[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]

= −ko
(
N − 1

2

)
dyκy ,

φFDAz =

(
P − 1

2

)
[∆ωz (t− to)− kodzκz −∆kz r̂o · r̄′]

= −ko
(
P − 1

2

)
dzκz . (3.55)

Similarly, without any frequency progression the FDA amplitude term reduces to

sin
{
N
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
}

sin
{

1
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
}

×
sin
{
P
2

[∆ωz (t− to)− kodzκz −∆kz r̂o · r̄′]
}

sin
{

1
2

[∆ωz (t− to)− kodzκy −∆kz r̂o · r̄′]
}

=
sin
(
−ko N2 dyκy

)
sin
(
−ko 1

2
dyκy

) sin
(
−ko P2 dzκz

)
sin
(
−ko 1

2
dzκz

)
=

sin
(
ko

N
2
dyκy

)
sin
(
ko

1
2
dyκy

) sin
(
ko

P
2
dzκz

)
sin
(
ko

1
2
dzκz

) , (3.56)

where sin (−ϕ) = − sin (ϕ) is used in the final step. Again, the limiting FDA ampli-

tude in Equation (3.56) is the same as the CFA amplitude in Equation (3.23).

Next, the planar FDA model is considered for a linear array, i.e., P = 1 elevation

channel. With P = 1, φFDAz in Equation (3.47) is eliminated removing the phase

component. Amplitude contribution in Equation (3.46) is normalized by

sin
(
P
2

Ψ
)

sin
(

1
2
Ψ
) = 1 . (3.57)

The remaining FDA pattern is given by

f (t, r̄′, r̄o)FDA = exp
(
jφFDAy

) sin
(
N
2

Θ
)

sin
(

1
2
Θ
) , (3.58)

and agrees with that previously shown in [48].
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Table 3.3: FDA parameters used to computationally verify Equation (3.46) and pro-
duce the array patterns in Figure 3.10 to Figure 3.14.

Parameter Value
Number Azimuth Elements (N) 9
Number Elevation Elements (P ) 9

Base Operating Frequency (ωo = 2πfo) 2π(10 GHz)
Azimuth Elemental Spacing (dy) λo/2 = 0.015 m
Elevation Elemental Spacing (dz) λo/2 = 0.015 m

Azimuth Frequency Progression, Scenario A (∆ωy = 2π∆fy) 2π(30 MHz)
Azimuth Frequency Progression, Scenario B (∆ωy = 2π∆fy) 2π(150 MHz)

Elevation Frequency Progression (∆ωz = 2π∆fz) 0

Frequency progression across both dimensions is introduced with the goal of

validating the constraint in Equation (3.39). This validation is performed empirically

by using simulation to compare the actual array factor as stated in Equation (3.35)

to the analytical array factor in Equation (3.46), recalling the latter is an approxima-

tion after eliminating quadratic phase terms. A planar FDA is simulated using the

parameters in Table 3.3 with two scenarios presented. In Scenario A horizontal fre-

quency progression is selected to produces a quadratic phase of π/4, i.e at the limit of

the restriction imposed by Equation (3.39). In Scenario B, the frequency progression

is intentionally increased by a factor of five such that Equation (3.39) is no longer

satisfied. In both cases, no vertical frequency progression exists enabling the FDA

range and time dependency to be shown completely in the principal elevation plane.

With no vertical frequency progression, i.e., ∆kz = 0, and analysis performed

in the principal elevation plane, i.e., ψ = 0 and so κz = sinψ = 0, κy = cosψ sin θ =

sin θ, Equation (3.39) reduces to

N2∆kydy sin θ < ±π
4
. (3.59)

Figure 3.10 to Figure 3.14 display the actual and analytical array factor for the two

scenarios. The power pattern is shown only to 3 dB for clarity. Figure 3.10 and

Figure 3.11 plot the actual and analytical array factors respectively for Scenario A.
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No appreciable difference between the two plots is observed as total uncompensated

phase error in the analytical formulation is limited to π/4, verifying the analytical

model.

Note that Figure 3.10 and Figure 3.11 are plotted only to a range of 10 m. From

Equation (3.51) it was observed that the horizontal frequency progression illuminated

a point every 1/∆fy sec. Alternatively, multiple ranges spaced c/∆fy m apart are

illuminated at a given time. With the parameters for Scenario A, this spacing is

c/∆fy = 10 m and the simulation verifies FDA theory. The antenna pattern is

periodic in range and the pattern from r = 10 m to r = 20 m is identical to the plot

presented.

Figure 3.12 and Figure 3.13 show the actual and analytical array factors for

Scenario B with the difference between the two shown in Figure 3.14. The plots are

limited to a range of r = 2 m due the new periodicity of the pattern given the higher

frequency progression. The five-fold increase in frequency progression reduced the

periodicity in range by a factor of five. In this case, uncompensated phase error in

the analytical formulation is 5π/4 at θ = ±90◦ and the analytical solution diverges

from the actual array factor only at the azimuth extremes. By observing Figure 3.14

it is important to note that the errors are not significant until azimuth angle is greater

than θ = ±45◦. Using parameters for Scenario B in Table 3.3 with Equation (3.59),

N2∆kydy sin (±45◦) = ±3.5π

4
. (3.60)

Peak error occurs at θ = ±90◦ where, when normalized to peak antenna power, the

maximum error is limited to −1.2 dB.

In spotlight mode SAR, elevation and azimuth angles of only a few degrees are of

interest. Therefore Equation (3.46) along with the limits imposed by Equation (3.39)

are used in FDA SAR processing.

Finally, the analytical pattern in Equation (3.46) was compared to finite-difference

time-domain (FDTD) simulation. FDTD is a commonly used computational electro-
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Figure 3.10: Actual 9×9 FDA array factor with relatively small frequency progression
of ∆ωy = 2π(30 MHz).

Figure 3.11: Analytical 9 × 9 FDA array factor with relatively small frequency pro-
gression of ∆ωy = 2π(30 MHz), such that Equation (3.40) produces a quadratic phase
of π/4. There is no appreciable difference between this plot and Figure 3.10.
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Figure 3.12: Actual 9×9 FDA array factor with relatively large frequency progression
of ∆ωy = 2π(150 MHz).

Figure 3.13: Analytical 9×9 FDA array factor with relatively large frequency progres-
sion of ∆ωy = 2π(150 MHz), such that Equation (3.40) produces a quadratic phase
of 5π/4.
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Figure 3.14: Difference plot of results in Figure 3.12 and Figure 3.13. Errors in
the analytical development are not significant until azimuth angle is greater than
θ = ±45◦ with peak error occurring at θ = ±90◦. When normalized to peak antenna
power, the maximum error is limited to −1.2 dB

dynamics modelling technique based on Maxwell’s equations to compute electric and

magnetic fields at every point in a pre-defined region [54]. FDTD simulation time

was sufficient to allow FDA pattern to be analyzed in the far-field. Analytical models

developed during this research compare favorably with both observed FDTD pat-

terns [45] and 3-D EM simulation radiation characteristics independently reported

in [28].
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IV. Frequency Diverse Array Waveform Development

Chapter III developed the antenna patterns for both the CFA and FDA systems. The

development was used to differentiate between CFA and FDA environment illumina-

tion. Before introducing FDA SAR processing, the FDA signal model is developed.

This chapter presents a novel technique to producing a wideband, widebeam

waveform through the use of an FDA. The wideband nature is not achieved through

common approaches using complex radar hardware or phase coding techniques. Rather,

the wideband is realized through simultaneous transmission of frequency offset sinu-

soidal tones. The real advantage in this technique is scalability. The frequency band

coverage is increased/decreased through the addition/removal of antenna elements

without the need to redesign waveform generators and other associated hardware.

Though this waveform is used in the context of SAR imaging in the following chap-

ter, the signal model developed in this chapter enables the waveform to be utilized in

a variety of radar applications.

4.1 Analytic Waveform Development

In typical spotlight SAR applications the platform altitude, and thus grazing

angle ψ, is small and approximately constant through the CPI. Once the antenna is

steered to the appropriate grazing angle, only steering in azimuth is required to main-

tain focus on the target scene. In fact, in some SAR systems utilizing phased array

antennas rely on mechanical steering for elevation control and electronic steering in

azimuth [41]. Therefore, it is appropriate to consider a planar FDA with frequency

progression only in azimuth, i.e., ∆ωy 6= 0 and ∆ωz = 0, in the FDA SAR develop-

ment.
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The composite FDA signal received at point r̄′ is given in Equations (3.42)

and (3.46). Combining these two equations yields

sT (t, r̄′, r̄o)FDA = exp
{
j
[
ωo (t− to)− kor̂o · r̄′ + φFDAy + φFDAz

]}
×

sin
{
N
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
}

sin
{

1
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
}

×
sin
{
P
2

[∆ωz (t− to)− kodzκz −∆kz r̂o · r̄′]
}

sin
{

1
2

[∆ωz (t− to)− kodzκy −∆kz r̂o · r̄′]
} , (4.1)

where

φFDAy =

(
N − 1

2

)
[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′] ,

φFDAz =

(
P − 1

2

)
[∆ωz (t− to)− kodzκz −∆kz r̂o · r̄′] . (4.2)

If ∆ωz = 0, then ∆kz = 0, and with ψ = ψo a constant, Equation (4.1) and Equa-

tion (4.2) reduce to

sT (t, r̄′, r̄o)FDA = E (ψo) exp
{
j
[
ωo (t− to)− kor̂o · r̄′ + φFDAy

]}
×

sin
{
N
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
}

sin
{

1
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
} , (4.3)

where

E (ψo) = exp

[
−j
(
P − 1

2

)
kodzκz

]
sin
(
P
2
kodzκz

)
sin
(

1
2
kodzκz

) . (4.4)

Amplitude and phase contributions from E (ψo) are constant as P , ko, dz, and κz =

sinψo do not vary throughout the CPI. This term contains known features of the

pulse return and is removed by the receiver. Substituting φFDAy from Equation (4.2)
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into Equation (4.3) and collecting like terms results in

sT (t, r̄′, r̄o)FDA = exp

{
j

[
ωo +

(
N − 1

2

)
∆ωy

]
(t− to)

}
× exp

{
−j
[
ko +

(
N − 1

2

)
∆ky

]
r̂o · r̄′

}
× exp

[
−j
(
N − 1

2

)
kodyκy

]
×

sin
{
N
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
}

sin
{

1
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
} . (4.5)

From Equation (4.5) it is observed that the composite signal is an amplitude modu-

lated sinusoidal tone. The center frequency ωc is

ωc = ωo +

(
N − 1

2

)
∆ωy , (4.6)

with corresponding wavenumber kc

kc =
ωc
c
, (4.7)

and wavevector k̄c

k̄c = kcr̂o . (4.8)

The use of center frequency agrees with convention for wideband waveforms. Incor-

porating Equations (4.6) and (4.7) simplifies Equation (4.5) to

sT (t, r̄′, r̄o)FDA = exp [jωc (t− to)] exp
(
−jk̄c · r̄′

)
× exp

[
−j
(
N − 1

2

)
kodyκy

]
×

sin
{
N
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
}

sin
{

1
2

[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′]
} , (4.9)

where geometric phase effects are represented as time delays seen in many SAR ref-

erences [29, 51].
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Table 4.1: FDA parameters used to produce the waveforms shown in Figure 4.1 to
Figure 4.3.

Parameter Value
Number Azimuth Elements (N) 9
Number Elevation Elements (P ) 1

Base Operating Frequency (ωo = 2πfo) 2π(10 GHz)
Azimuth Elemental Spacing (dy) λo/2 = 0.015 m

Azimuth Frequency Progression, Scenario A (∆ωy = 2π∆fy) 2π(1 kHz)
Azimuth Frequency Progression, Scenario B (∆ωy = 2π∆fy) 2π(1 GHz)

Before proceeding, an example is used to visualize the waveform in Equa-

tion (4.9). The parameters given in Table 4.1 are used to generate sT (t, r̄′, r̄o)FDA for

two scenarios. The resulting waveforms are shown in Figure 4.1 and Figure 4.2. In

Scenario A (Figure 4.1) horizontal frequency progression is small while in Scenario B

(Figure 4.2), this value is increased six orders of magnitude. The two features of

the amplitude pattern critical to SAR imaging are the periodicity of the amplitude

envelope and time extent of peak amplitude response. It will be shown that, when

used as a radar waveform, the periodicity leads to range ambiguities while the width

of the peak amplitude response is related to range resolution. These two features are

analyzed next.

Figure 4.3 displays the magnitude of Figure 4.2. From Figure 4.3 it is evident

that the amplitude envelope is periodic in time. Though not strictly a sinc (·) function

given by Equation (2.72), the envelope

sin
(
N
2

Θ
)

sin
(

1
2
Θ
) , (4.10)

where Θ is given in Equation (3.44), exhibits a similar structure. The periodicity of

the antenna pattern in range, angle, and time due to the low frequency amplitude

modulation were analyzed in Section 3.4.2 and in [48]. Equation (3.51) shows the

periodicity of the antenna patten in time. The maxima of sT were shown to occur

with a period of 1/∆fy sec. This period is dependent only on frequency progression
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Figure 4.1: FDA waveform for a 9× 1 array with ∆fy = 1 kHz. Due to the relatively
low frequency progression, no amplitude modulation is observable within the timescale
shown.
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Figure 4.2: FDA waveform for a 9×1 array with ∆fy = 1 GHz. With a relatively high
frequency progression, amplitude modulation is clearly observed within the timescale
shown. The periodicity is 1/1 GHz = 1 nsec as seen here.
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Figure 4.3: Magnitude of FDA waveform from Figure 4.2 with the periodicity and
main lobe width shown.

and is independent of center frequency ωc. In Scenario A with ∆fy = 1 kHz, this

period is 1/1 kHz = 1 msec and the amplitude modulation is not observed within

the timescale shown in Figure 4.1. However, in Scenario B with ∆fy = 1 GHz,

the periodicity is 1/1 GHz = 1 nsec and amplitude modulation is easily observed in

Figure 4.2 when sT is plotted over the same timescale. In both figures, the FDA

waveform is evaluated at antenna boresight, i.e., θo = 0, and at r̄′ = 0.

The time extent of the peak amplitude response is given by computing the time

between first nulls on either side of the maximum. In Equation (4.9) the first nulls

occur at time t when

N

2
[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′] = πu, u = ±1 . (4.11)

For u = +1

t+1 =
1

N∆fy
+
kodyκy
∆ωy

+
r̂o · r̄′

c
+ to , (4.12)
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and for u = −1

t−1 = − 1

N∆fy
+
kodyκy
∆ωy

+
r̂o · r̄′

c
+ to . (4.13)

The time extent given by difference between Equation (4.12) and Equation (4.13) is

∆t =
2

N∆fy
. (4.14)

In Figure 4.3 the sinc-shaped amplitude modulation and periodicity is clearly

displayed. One critical observation is that a windowed portion of this waveform is

similar in structure to a pulse compressed waveform [25]. Pulse compression is tradi-

tionally performed in receiver processing to improve range resolution. A novel tech-

nique proposed here in achieving pulse compression is the use of an FDA. The FDA

effectively performs pulse compression by simultaneously transmitting N sinusoidal

pulses. The composite signal has a peak response concentrated in a time duration

shorter than the total pulse width, and the waveform appears as a very narrow pulse.

This compression is not due to any channel level amplitude modulation. In order to

ensure maximum power on target, each element should transmit peak power for the

duration of a pulse [50] as is the case with the FDA waveform. The resulting ampli-

tude modulation is a result of interference between the waveforms transmitted by each

channel. The use of the FDA waveform for radar applications was first introduced

in [22].

4.2 Selection of FDA Waveform Parameters

The FDA waveform in Equation (4.9) depends on many system parameters and

optimal selection of these parameter values are application specific. In this presenta-

tion parameter selection is optimized for FDA SAR imaging. Upon initial inspection,

the base frequency ωo, horizontal frequency progression ∆fy, number of horizontal

channels N , horizontal elemental spacing dy, and pulse width τc are variable. How-

ever, it will be shown that these parameters are mutually dependent such that design

trade-offs must be considered.
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A high ωo is desired as cross-range resolution is improved with the associated

shorter wavelength λo per Equation (2.3). It is noted however that ωo is restricted

by practical considerations such as hardware limitations, frequency dependent atmo-

spheric attenuation effects, and operational restrictions such as Federal Communi-

cations Commission regulations. Elemental spacing dy is commonly set as λo/2 to

prevent grating lobes [52] and therefore is dependent on ωo. There is little flexibility

in selecting these parameters.

The periodicity in waveform amplitude directly influences selection of pulse

width. A long pulse is desired to maximize power on target [49, 52] as mentioned.

However, the FDA waveform cannot have an arbitrarily long pulse width. The com-

posite signal will contain multiple maxima (see Figure 4.3) resulting in range ambi-

guities. Having analyzed waveform periodicity in Section 3.4.2, restricting the pulse

width on all channels to

τc =

∣∣∣∣ 1

∆fy

∣∣∣∣ , (4.15)

ensures exactly one peak will occur during the pulse duration. The absolute value

accounts for a possible negative frequency progression. The FDA waveform is then

defined by

s (t) = rect

(
t

τc

)
sT (t, r̄′, r̄o)FDA . (4.16)

With each channel transmitting a pulsed sinusoid, FDA waveform bandwidth

is next derived. The 3 dB bandwidth for a pulsed sinusoid is inversely proportional

to pulse width. The selection of τc in Equation (4.15) leads to bandwidth for the nth

channel Bn of [16]

Bn = 0.886
1

τc
= 0.886∆fy ≈ ∆fy, n = 0, . . . , N − 1 . (4.17)

The subscript p is omitted as, with no vertical frequency progression, each vertical row

of array elements operates at the same center frequency and bandwidth. The above

selection of τc and ∆fy leads to an FDA with N channels spaced ∆fy in frequency,
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each operating over spectrum of width ∆fy. Thus, total waveform bandwidth BFDA

of the FDA waveform is

BFDA = N |∆fy| . (4.18)

Figure 4.4 plots the spectrum of individual channels of Scenario B from Ta-

ble 4.1. With ∆fy = 1 GHz, the pulse width is τc = 1 nsec from Equation (4.15).

It is easily seen that each channel operates over a unique frequency band, with no

overlap between bands to the 3 dB level (dashed line in Figure 4.4), and the N = 9

elements operate over a contiguous frequency bands. Figure 4.5 plots the spectrum

of the composite pulsed FDA waveform. The simultaneous use of individual narrow-

band sinusoidal pulses produces a wideband composite signal with bandwidth given

by Equation (4.18), BFDA = 9 GHz in this case, and centered at ωc = 14 GHz from

Equation (4.6).

One metric used to measure a radar waveform’s utility is the pulse compression

ratio (PCR) [26, 52]. The PCR is the ratio of the uncompressed pulse width to the

compressed pulse width. The PCR is alternatively expressed by the time-bandwidth

product (TBP). Long pulse duration is desired for more energy on target and larger

bandwidth improves range resolution. Therefore, a large TBP is desired. From Equa-

tion (4.15) and Equation (4.18), this value is easily computed for the FDA waveform

as

TBPFDA = τcBFDA = N . (4.19)

Increasing horizontal channels therefore improves the TBP and system performance.

Finer range resolution is proportional to waveform bandwidth from Equation (2.1).

Though increasing bandwidth in the FDA waveform requires a large ∆fy and/or large

N from Equation (4.18), upper limits restrict selection of these two parameters. From

Equation (4.15), a large frequency progression limits pulse duration and has the unde-

sirable effect of reducing power on target. Practical size constraints limit the number

of horizontal channels N .
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Figure 4.4: The spectrum of individual channels from Scenario B from Table 4.1.
Each channel operates over a unique frequency band, with no overlap between bands
to the 3 dB level (dashed line in figure).
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Figure 4.5: Composite FDA waveform spectrum. The simultaneous use of individual
narrowband sinusoidal pulses produces a wideband composite signal.
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4.3 Comparison of FDA and LFM Waveform

In Chapter II, it was stated that linear frequency modulation is the most com-

mon form of pulse compression. Thus, it is of interest to compare LFM and FDA

waveform properties. The LFM bandwidth is given by Equation (2.44) making the

time-bandwidth product

TBPLFM = τc
ατc
π

=
ατ 2

c

π
. (4.20)

The TBP is improved by either increasing chirp rate α or increasing pulse duration

τc. With the FDA waveform, this increase is achieved by increasing the total number

of transmit channels N .

An important aspect of radar signals is analysis of matched filter characteristics

through the ambiguity function [33]. In general radar applications, a pulse return is

a delayed and possibly Doppler shifted replica of the transmitted pulse. Thus, if the

transmitted pulse is given by s (t), the pulse return r (t) is

r (t) = s (t− τo) exp (j2πfdt) , (4.21)

where τo is the round-trip propagation time from Equation (2.45) and fd is the Doppler

frequency shift. A pulse return’s signal power is a small fraction of that transmitted

and matched filtering is used to maximize SNR. The matched filtering operation often

also performs pulse compression. It has been shown that for complex transmitted

signal s (t), the optimum matched filter is given by s∗ (−t) assuming Gaussian noise,

where ∗ denotes conjugation [49]. This signal is a time reversed and conjugated replica

of the transmitted signal and the matched filter can be seen as an autocorrelation

operation. The output of the matched filter is given by [25]

y (τo, fd) =

∞∫
−∞

s (t− τo) s∗ (t) exp (j2πfdt) dt , (4.22)

91



and is often called the time-frequency autocorrelation function (TFACF). Note that

the matched filter s∗ (−t) does not account for any range delay or Doppler shift in

the pulse return in Equation (4.21). The effect of range and frequency mismatch on

the output of the matched filter is given by the ambiguity function (AF), χ (τo, fd),

which is often shown as the magnitude squared of Equation (4.22)

χ (τo, fd) = |y (τo, fd)|2 . (4.23)

The AF for the LFM and FDA waveforms are shown in Figure 4.6 and Figure 4.7

respectively to enable an empirical comparison of the two waveforms. The LFM

waveform is produced using a 9×1 array with center frequency fc = 14 GHz, BLFM =

9 GHz, and τc = 1 nsec. The FDA waveform is produced also for a 9× 1 array with

base frequency fo = 10 GHz, ∆fy = 1 GHz, and τc = 1 nsec as per Scenario B in

Table 4.1. With each channel using Bn = 1 GHz of bandwidth, the total bandwidth

utilized by the FDA is BFDA = 9 GHz from Equation (4.18). These parameters were

selected such that the two waveforms have the same time duration, bandwidth, and

center frequency.

The principal disadvantage of LFM compression is range-doppler coupling [52]

that is evident in the AF in Figure 4.6. A positive Doppler shift on the pulse return

causes the matched filter output to peak sooner than if no shift was present, and the

apparent target range appears closer than the true range. A negative Doppler shift

has the opposite effect. However, with the FDA case illustrated in Figure 4.7, no

range-doppler coupling is present and the matched filter output occurs at the correct

time (range) even with severe Doppler shifts present.

As discussed, the LFM pulse is compressed via matched filtering when the pulse

return is received by the radar. The FDA (solid line) and compressed LFM (dashed

line) waveforms are compared in Figure 4.8. These plots are essentially cuts of the

respective AF along the fd = 0 Hz axis. The two waveforms have a comparable TBP

and range resolution given the same pulse width and bandwidth used. It is important

92



Figure 4.6: Ambiguity function for LFM waveform using a 9 × 1 array with center
frequency fc = 14 GHz, BLFM = 9 GHz, and τc = 1 nsec. Range-doppler coupling is
clearly evident.

Figure 4.7: Ambiguity function for FDA waveform using a 9 × 1 array with base
frequency fo = 10 GHz, ∆fy = 1 GHz, and τc = 1 nsec. No range-doppler coupling is
present.
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Figure 4.8: Transmitted pulse magnitudes for 9×1 array: (Solid Line) FDA processing
with fo = 10 GHz, ∆fy = 1 GHz, and τc = 1 nsec, and (Dashed Line) LFM waveform
with BLFM = 9 GHz of bandwidth and τc = 1 nsec. The two waveforms yield similar
range resolution.

to note that with a linear array transmitting LFM pulses, each element transmits

across the entire waveform bandwidth, whereas in FDA each element transmits across

a 1/N portion of the spectrum.

4.4 Azimuth Dependent Point Spread Function (PSF)

In Section 4.3 it is shown that no range-doppler coupling is present in the

FDA AF. The FDA waveform however does introduce a coupling between range and

azimuth. From Equation (3.49) it is shown that FDA maxima occur when

1

2
[∆ωy (t− to)− kodyκy −∆kyr̂o · r̄′] = πu, u = 0,±1, . . . , (4.24)

In Equation (4.15), pulse width is restricted such that only one maximum is realized

during the pulse duration. This maximum corresponds to the u = 0 case in Equa-

tion (4.24). When analyzing the timing of the maximum at scene center, i.e., r̄′ = 0,
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Equation (4.24) reduces to

∆ωy (t− to)− kodyκy = 0 . (4.25)

Substituting ∆ωy = 2π∆fy, ko = 2π/λo, κy = cosψo sin θo and solving for t in

Equation (4.25), the maximum occurs at time

tapp = to +
dy cosψo sin θo

λo∆fy
. (4.26)

In Equation (4.26), to is the actual propagation time to the target. The second term

is an additional time difference ∆tFDA that is a function of the target’s azimuth and

FDA frequency progression (ψo is constant as previously stated)

∆tFDA (θo,∆fy) =
dy cosψo sin θo

λo∆fy
. (4.27)

This value has the effect of making the target range appear to be greater or smaller

than actual range, and the subscript app is included in Equation (4.26). The range

offset decreases with increasing frequency progression, where in the limiting case tapp =

to.

The azimuth dependency is clearly evident when the waveform is plotted. Fig-

ure 4.9 plots a τc = 1 nsec pulse and parameters from Scenario B in Table 4.1. This

snapshot represents the waveform after t = 2 nsec propagation time. The array is

oriented along the cross-range axis with the reference element located at (0, 0) and

remaining elements in the negative y (cross-range) direction. Azimuth dependency

is considered for three cases: along antenna boresight (black dashed line at θo = 0),

positive azimuth (red dashed line at θo = π/4), and negative azimuth (green dashed

line at θo = −π/4). The wide beam nature of the antenna pattern is observed in this

figure.

At antenna boresight, θo = 0 (black dashed in Figure 4.9) and therefore ∆tFDA =

0 from Equation (4.27). In this case the maximum occurs in the center of the pulse
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Figure 4.9: A τc = 1 nsec pulse radiated from a 9 × 1 FDA with fo = 10 GHz,
and ∆fy = 1 GHz after t = 2 nsec propagation. The azimuth dependency is clearly
evident as the peak response occurs late in the pulse duration for positive azimuth
(red dashed line), is centered at radar boresight (black dashed line), and occurs early
in the pulse for negative azimuth (green dashed line).
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Figure 4.10: Cross-section of FDA waveform from Figure 4.9 for θ = 0 (black dashed
in Figure 4.9). At antenna boresight, the peak is centered in the pulse.
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Figure 4.11: Cross-section of FDA waveform from Figure 4.9 for θ = π/4 (red dashed
in Figure 4.9). For positive azimuth the location of the peak magnitude is delayed
within the pulse duration. The parameters used yield a delay of ∆tFDA = 0.35 nsec.
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Figure 4.12: Cross-section of FDA waveform from Figure 4.9 for θ = −π/4 (green
dashed in Figure 4.9). For negative azimuth the location of the peak magnitude
is advanced within the pulse duration. The parameters used yield an advance of
∆tFDA = −0.35 nsec.

Figure 4.13: A τc = 1 nsec pulse radiated from a 9× 1 FDA with fo = 10 GHz, and
∆fy = 1 GHz after t = 2 nsec propagation. The solid black line represents the normal
to the plane of uniform phase at a given azimuth angle. The solid red line represents
the normal to the plane of uniform amplitude the pulse.
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as seen in Figure 4.10. However, if θo > 0 then ∆tFDA > 0 and the waveform max-

imum is delayed in the pulse. Figure 4.11 shows the transmitted waveform for this

case when θo = π/4 (red dashed in Figure 4.9). With the parameters used and set-

ting ψo = 0, Equation (4.27) equates to ∆tFDA = 0.35 nsec for θo = π/4, and is

confirmed by the figure. Finally, if θo < 0 then ∆tFDA < 0 and the maximum ap-

pears earlier in the pulse. Figure 4.12 shows the transmitted waveform for this case

when θo = −π/4 (green dashed in Figure 4.9). With the parameters used and setting

ψo = 0, Equation (4.27) equates to ∆tFDA = −0.35 nsec for θo = −π/4 where the

negative sign indicates an advance. A negative frequency progression has the opposite

effect by advancing the appearance of the maximum for positive azimuth and delay-

ing the maximum for negative azimuth. From Equation (4.27) it is seen that ∆tFDA

increases with azimuth and is inversely proportional to frequency progression.

The scattered return is a time-delayed replica of transmitted signal. Thus the

return, and therefore range PSF, for a point target depends on the target’s azimuth

location. This azimuth-dependent range profile is an important consideration in FDA

SAR processing. As the radar traverses the synthetic aperture, the varying θo causes

the apparent a shift in target range between collection locations. This apparent target

motion induced by FDA waveform produces a defocued image and must be accounted

for.

Along with varying the apparent target range, the FDA waveform exhibits an-

other interesting characteristic. In Sec. 2.1.3 it was shown that the orientation of

the propagating uniform plane wave is normal to propagation direction by Equa-

tion (2.31). In the base case, both phase and amplitude were uniform across the

plane. The FDA waveform produces a non-uniform plane wave as seen in Figure 4.13.

Equation (4.9) and Equation (2.22) contain the same phase content, and therefore

phase is constant for a given range. Waveform amplitude is azimuth dependent and,

for a given range, planes of constant phase and constant amplitude do not coincide.

As the waveform propagates, these two planes have differing orientations.
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In Figure 4.13, the solid black line represents the normal to the plane of uniform

phase at a given azimuth angle. The solid red line represents the normal to the plane

of uniform amplitude the pulse. It is difficult to define propagation direction with the

two different orientations.

4.5 Receive Signal Modelling

Heretofore, FDA illumination patterns were discussed, i.e., the development

considered one-way propagation from the npth antenna channel to a target in the scene

at point r′. SAR data collection is a two-way problem and signal models developed

in Chapter III are now modified to reflect this fact.

Derivation of the receive signal follows analysis of the FDA illumination pattern

in Section 3.4. The analysis must retain the two-way path length from each channel

to the target and back. The total path length travelled for a signal transmitted for

channel np is broken down into the round-trip distance between that channel and the

reference channel, and the round-trip distance from the reference channel to point r′.

Specific receiver architecture designs drives the composite received signal. Hard-

ware may be designed such that each channel has an associated wideband receive

module that is able to capture entire bandwidth of the FDA waveform. The draw-

back of this approach is the need for NP wideband receive elements. Additionally,

phase shifters are required on each channel to properly align phase of the incoming

signal.

Alternatively, receiver architecture may be designed such that each channel re-

ceives at its specific transmit frequency and bandwidth. In this second method, the

composite wideband waveform is reconstructed as a post-processing step. The ben-

efit of this approach is that each channel essentially operates independently. While

negating the need for dedicated wideband receive modules, each channel requires a

band-pass filter instead. Such filters must be sufficiently narrowband to pass appro-

priate frequency content to prevent cross-channel bleedthrough. With the selection of
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frequency progression and pulse width in Section 4.2, it was shown in Figure 4.4 there

was no overlap in operating bands to the 3 dB level and initially shows this assump-

tion to be appropriate. However, strict requirements on center frequency and pass

band region require filters to be near ideal. Any deviation in filter properties or selec-

tion of waveform parameters different than in Section 4.2 may lead to cross-channel

interference.

The approach used in this research aims to simplify receiver design. A single

wideband receiver is co-located with the reference element and is the design used

in [48]. Development of the receive signal begins by modifying the transmit signal in

Equation (3.35)

sT (t, r̄′, r̄o) =
N−1∑
n=0

P−1∑
p=0

exp [jωnp (t− to)]

× exp
(
jk̄np · d̄np

)
exp

(
−jk̄np · r̄′

)
, (4.28)

to account for two-way propagation. Equation (4.28) shows the one-way path length

travelled by the transmitted waveform received at r′ is the path length from the npth

element to the reference element (d̄np), the path length from the reference element to

scene center (r̄o inherent in to), and the path length from scene center to point r′ (r̄′).

With the selected receiver architecture, the total path length travelled by a sinusoid

transmitted by each channel to the single wideband receiver at the reference element

must account for round-trip distance over r̄o and r̄′ and one-way distance over d̄np.

The received signal r (t, r̄′, r̄o)FDA at the reference element from a point scatterer

at r̄′ with reflectivity ρr̄′ is then

r (t, r̄′, r̄o)FDA =
N−1∑
n=0

P−1∑
p=0

ρr̄′ exp [jωnp (t− 2to)]

× exp
(
jk̄np · d̄np

)
exp

(
−j2k̄np · r̄′

)
. (4.29)
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Following the development in Chapter III, Equation (4.29) is reduced to

r (t, r̄′, r̄o)FDA = ρr̄′ exp
{
j
[
ωo (t− 2to)− 2kor̂o · r̄′ + φ′FDAy + φ′FDAz

]}
×

sin
{
N
2

[∆ωy (t− 2to)− kodyκy − 2∆kyr̂o · r̄′]
}

sin
{

1
2

[∆ωy (t− 2to)− kodyκy − 2∆kyr̂o · r̄′]
}

×
sin
{
P
2

[∆ωz (t− 2to)− kodzκz − 2∆kz r̂o · r̄′]
}

sin
{

1
2

[∆ωz (t− 2to)− kodzκy − 2∆kz r̂o · r̄′]
} , (4.30)

where

φ′FDAy =

(
N − 1

2

)
[∆ωy (t− 2to)− kodyκy − 2∆kyr̂o · r̄′] ,

φ′FDAz =

(
P − 1

2

)
[∆ωz (t− 2to)− kodzκz − 2∆kz r̂o · r̄′] . (4.31)

Finally, assuming only a horizontal frequency progression and omitting elevation term

E (ψo) from Equation (4.4) as before, the received signal is

r (t, r̄′, r̄o)FDA = ρr̄′ exp [jωc (t− 2to)] exp
(
−j2k̄c · r̄′

)
× exp

[
−j
(
N − 1

2

)
kodyκy

]
×

sin
{
N
2

[∆ωy (t− 2to)− kodyκy − 2∆kyr̂o · r̄′]
}

sin
{

1
2

[∆ωy (t− 2to)− kodyκy − 2∆kyr̂o · r̄′]
} , (4.32)

where ωc and k̄c were given in Equation (4.6) and Equation (4.8), respectively.
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V. Frequency Diverse Array Application to SAR

With traditional waveforms, the range profile for a point target, i.e., the range PSF, is

invariant to viewing angle θo. When performing backprojection, sampled returns add

coherently at the true target location in the reconstruction grid producing a focused

SAR image. Chapter IV introduced the FDA waveform and showed a PSF that

changed with viewing angle. As azimuth angle θo varies while the collection platform

traverses the synthetic aperture, a range error proportional to Equation (4.27) is

induced at each collection location. The apparent target location varies across the

CPI and it will be shown that this effect causes target defocusing in the reconstructed

image.

This chapter details processing of FDA collected data for SAR imaging. Various

approaches can be applied to account for the FDA induced range and azimuth effects

to obtain a properly focused SAR image. It may be possible to manipulate the phase

history directly to account for these effects before image reconstruction. Alternatively,

the specific image reconstruction algorithm used can be modified to ensure formation

of a focused SAR image. The latter approach is used in this research.

Variation in waveform amplitude resulted in an apparent time advance or de-

lay per Equation (4.26). The time-domain backprojection algorithm introduced in

Section 2.2.2 performed image reconstruction based on time delays and therefore is

most suited to account for FDA effects. Additionally, it will be seen that FDA SAR

processing produces a set of apparent collection locations. These locations are non-

uniformly spaced and appear to alter the platform’s actual flight path. While these

facts are transparent to the backprojection algorithm, two-dimensional interpolation

in FFT-based algorithms discussed in Section 2.2.1 is made more difficult.

Two alternative modifications to the backprojection algorithm are presented.

In Section 5.1, backprojection is performed as usual. However, it will be shown that

the sample return chosen for backprojection to any given pixel is not simply the inter-

polated sample corresponding to round-trip propagation time. The second approach

detailed in Section 5.2 aims to exploit the unique properties of the FDA waveform to
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Table 5.1: FDA parameters used in simulating FDA based phase history of the sce-
nario in Figure 2.11.

Parameter Value
Number Azimuth Elements (N) 45
Number Elevation Elements (P ) 1
Base Operating Frequency (fo) 10 GHz

Center Frequency (fc) 10.44 GHz
Azimuth Frequency Progression (∆fy) 20 MHz

Waveform Bandwidth 900 MHz
L 430 m

improve cross-range resolution in SAR imagery. Specifically, an additional processing

step is introduced between data collection and image reconstruction that creates a

mapping from the set of actual collection locations to a set of apparent SAR collec-

tion locations. This mapping aims to match the phase history collected using the

FDA waveform at the actual collection locations with phase history collected from

the apparent collection locations had traditional waveforms been used.

5.1 Image Reconstruction: Modified Backprojection

The need for a modified backprojection algorithm with FDA collected data can

be seen by a simple imaging example. Figure 5.1 shows the reconstructed image of the

scenario in Figure 2.11. FDA data collection is performed with parameters used in

Table 5.1 and backprojection is applied without modification. Given the higher center

frequency as compared to that used in Section 2.2.2, a synthetic aperture length of

L = 430 m (reduced from L = 450 m) is required to achieve equal range and cross-

range resolutions δx = δy = 0.167 m. As previously discussed, the azimuth dependent

PSF induces apparent target motion leading to a defocused image.

The first approach developed to properly account for FDA effects modifies the

backprojection algorithm. With traditional backprojection, the interpolated time

sample chosen for backprojection to reconstruction grid point r̂′ is dictated by actual
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Figure 5.1: Reconstructed image of the scenario in Figure 2.11 using FDA collected
data. The Backprojection algorithm is used for image reconstruction without mod-
ification. The azimuth dependent PSF induces apparent target motion leading to a
defocused image.

Figure 5.2: By applying an appropriate time and phase correction to account for FDA
waveform effects, the modified backprojection algorithm produces a focused image.
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target range in Equation (2.78) as

τ̂ ′ = 2to +
2 r̂o · r̂′

c
. (5.1)

However, apparent target range is computed by analyzing the timing of peak magni-

tude in the pulse return. The peak time in Equation (4.32) is given when

1

2
[∆ωy (t− 2to)− kodyκy − 2∆kyr̂o · r̄′] = 0 , (5.2)

and solving for t yields the apparent round-trip target time as

tapp = 2to +
2 r̂o · r̄′

c
+
dy cosψo sin θo

λo∆fy
. (5.3)

Because image formation is performed in two dimensions, r̄′ in Equation (5.3) is

replaced with r̂′ and the interpolated time sample chosen for backprojection to r̂′ is

τ̂ ′app = 2to +
2 r̂o · r̂′

c
+
dy cosψo sin θo

λo∆fy
. (5.4)

In conjunction with this timing correction, an associated phase correction of

exp

(
−jωc

dy cosψo sin θo
λo∆fy

)
. (5.5)

must also be applied. Implementing these changes into the backprojection algorithm

produces a focused SAR image as shown in Figure 5.2.

5.2 Image Reconstruction: Modified SAR Baseline

Section 5.1 presented one method of processing FDA data to produce a focused

SAR image with range and cross-range resolutions consistent with Equation (2.1)

and Equation (2.3) respectively. This capability extends wideband waveforms avail-

able for SAR applications with the advantage of simplicity in waveform generation

and scalability to wider bandwidths. An alternative method to image reconstruction
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modifies locations from which the phase history is backprojected. Specifically, the

actual collection locations are individually mapped to an apparent set of collection

locations from which the backprojection process is performed. This secondary set of

locations creates an apparent synthetic aperture.

Derivation of the apparent synthetic aperture is presented first, and it will be

shown that focused SAR imagery is produced with the modified processing. Next

FDA parameters are varied to achieve an improvement in cross-range resolution.

5.2.1 Apparent Collection Locations. The first step in deriving the sec-

ondary set of collection locations is computation of the plane of uniform amplitude

for the FDA waveform. In Section 2.1.3, the orientation of the propagating uniform

plane wave was derived as the slope of a line tangent to the spherical phasefront.

Similarly, the slope of a line tangent to uniform amplitude wavefront is used to derive

an apparent azimuth angle θapp from which the signal originated.

Equation (4.26) describes the location of peak amplitude in the transmitted

signal. Propagation time to is given in Equation (2.28), and from Equation (2.17)

sin θo =
y −Ry

ro cosψo

=
y −Ry

cosψo

√
(x−Rx)

2 + (y −Ry)
2 + (z −Rz)

2
. (5.6)

Substituting Equation (5.6) into Equation (4.26) and implicitly differentiating with

respect to y yields

D [tapp] = D [to] +D

[
dy cosψo sin θo

λo∆fy

]
0 = D [to]

+
dy

λo∆fy
D

 y −Ry√
(x−Rx)

2 + (y −Ry)
2 + (z −Rz)

2

 , (5.7)
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where D [·] denotes denotes a partial derivative with respect to y (∂/∂y). In Equa-

tion (2.30), D [to] is shown to be

(x−Rx)
∂x
∂y

cro
+

(y −Ry)

cro
+

(z −Rz)
∂z
∂y

cro
. (5.8)

The second term in Equation (5.7) can be shown to simplify to

dy
λo∆fyr2

o

[
ro +

(y −Ry) (x−Rx)
∂x
∂y

ro

+
(y −Ry)

2

ro
+

(y −Ry) (z −Rz)
∂z
∂y

ro

]
. (5.9)

The slope of the tangent line in the x-y image reconstruction plane is of interest

and the ∂z/∂y terms are omitted as before. Collecting like terms in Equations (5.8)

and (5.9) and solving for ∂x/∂y yields

∂x

∂y
= −

(y −Ry) + dyfo
∆fy

[
1 +

(
y−Ry
ro

)2
]

(x−Rx) + dyfo
∆fy

[
(y−Ry)

ro

(x−Rx)
ro

] . (5.10)

From Equation (2.17),

y −Ry

ro
= cosψo

y −Ry

ro cosψo
= cosψo sin θo = κy , (5.11)

and
x−Rx

ro
= cosψo

x−Rx

ro cosψo
= cosψo cos θo = κx , (5.12)

allows simplification of Equation (5.10) to

∂x

∂y
= −

(y −Ry) + dyfo
∆fy

(
1 + κ2

y

)
(x−Rx) + dyfo

∆fy
(κxκy)

. (5.13)
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The apparent azimuth angle θapp at scene center is the inverse tanget of the slope in

Equation (5.13) evaluated at y = Yc, x = Xc

θapp = − tan−1

[
(Yc −Ry) + dyfo

∆fy

(
1 + κ2

y

)
(Xc −Rx) + dyfo

∆fy
(κxκy)

]
. (5.14)

Typically, fo remains fixed and, as elemental spacing is referenced to associated wave-

length λo, dy also is fixed. At a given collection location and with fo and dy fixed, θapp

depends solely on frequency progression ∆fy. A decrease in frequency progression

leads to increase in the apparent view angle. Conversely, increasing ∆fy decreases its

effect on θapp until the limiting case where θapp = θ′ = θo in Equation (2.31).

Having computed apparent view angle, discussion turns to range correction. The

time offset ∆tFDA is given in Equation (4.27) and can be compensated by adjusting

range ro by an offset of

∆ro = c

(
dy cosψo sin θo

λo∆fy

)
=

dyfo cosψo sin θo
∆fy

, (5.15)

resulting in a new apparent range to scene center

rapp = ro + ∆ro . (5.16)

With θapp in Equation (5.14) and rapp in Equation (5.16) a new set of collec-

tion points can now be computed. For each actual collection location, the apparent

collection locations Rxapp, Ryapp, and Rzapp are found using Equation (2.17)

Rxapp = Xc − rapp cosψo cos θapp ,

Ryapp = Yc − rapp cosψo sin θapp ,

Rzapp = Zc − rapp sinψo . (5.17)
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The set of apparent collection locations require r̄o, r̂o, k̄app, and R to be redefined as

r̄app = rapp (x̂ cosψo cos θapp + ŷ cosψo sin θapp + ẑ sinψo) ,

r̂app = x̂ cosψo cos θapp + ŷ cosψo sin θapp + ẑ sinψo ,

k̄app = kcr̂app ,

Rapp = x̂Rxapp + ŷRyapp + ẑRzapp . (5.18)

Image reconstruction using time-domain backprojection proceeds as usual with

two notable exceptions. First, the phase history is backprojected from the apparent

collection locations Rapp and not actual collection locations. Second, altering view

angle to θapp and range to rapp require respective phase corrections during backpro-

jection.

In the pulse return of Equation (4.32), phase content in

exp [jωc (t− 2to)] exp

[
−j
(
N − 1

2

)
kodyκy

]
, (5.19)

are known features of the recovered signal and are removed by the radar receiver.

Ideally, it is desired that the remaining phase history be corrected to accurately

portray phase content as if collected at Rapp.

The first phase correction accounts for range adjustment ∆ro made in Equa-

tion (5.16). This phase correction is identical to Equation (5.5) and is independent

of target location r̄′. The second phase correction must account for the difference be-

tween actual wavevector k̄c and apparent wavevector k̄app. Target phase information

in Equation (4.32) is

exp
(
−j2 k̄c · r̄′

)
. (5.20)

Had collection actually been performed at points Rapp, this phase would have been

exp
(
−j2 k̄app · r̄′

)
, (5.21)
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and, ideally, the required phase correction is given by

exp
[
−j2 r̄′ ·

(
k̄app − k̄c

)]
. (5.22)

However, Equation (5.22) is target location specific. Specifically, this phase can be

perfectly corrected for a single target at r̄′, given this information is known a priori.

For the moment this phase will remain uncorrected and re-addressed in Section 5.4.

5.2.2 Modified FDA Point Spread Function. Development of the modified

PSF for FDA SAR processing follows the base case in Section 2.2.2. Target reflectivity

and phase information in Equation (4.32) for a single point scatterer is given by

ρr̄′ exp
(
−j2 k̄c · r̄′

)
, (5.23)

where

2 k̄c · r̄′ = 2 kc (x′ cosψo cos θo + y′ cosψo sin θo + z′ sinψo) . (5.24)

With traditional backprojection, the phase correction in Equation (2.83) is applied

to each pixel. When backprojecting from Rapp, the phase associated with each grid

location r̂′ is

2 k̄app · r̂′ = 2 kc (x̂′ cosψo cos θapp + ŷ′ cosψo sin θapp) . (5.25)

and Equation (2.84) becomes

2 k̄c · r̄′ − 2 k̄app · r̂′ = 2kc [cosψo (x′ cos θo − x̂′ cos θapp)

+ cosψo (y′ sin θo − ŷ′ sin θapp) + z′ sinψo]

= 2kc

[
cosψo cos θo

(
x′ − x̂′ cos θapp

cos θo

)
+ cosψo sin θo

(
y′ − ŷ′ sin θapp

sin θo

)
+ z′ sinψo

]
. (5.26)
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The integration of these phase corrections across θapp defines the PSF

PSFFDA =

∫
θapp

dθapp ρr̄′ exp
[
−j2

(
k̄c · r̄′ − k̄app · r̂′

)]
. (5.27)

Using small angel approximations, Equation (5.26) is reduced to

2
(
k̄c · r̄′ − k̄app · r̂′

)
= 2kc

[
cosψo cos θo (x′ − x̂′)

+ cosψo sin θo

(
y′ − ŷ′ θapp

θo

)
+ z′ sinψo

]
= 2kc

[
κx (x′ − x̂′) + κy

(
y′ − ŷ′ θapp

θo

)
+ z′κz

]
. (5.28)

and the PSF simplifies to

PSFFDA ≈ ρr̄′

∫
θapp

dθapp exp [−j2kc (x′ − x̂′)κx]

× exp

[
−j2kc

(
y′ − ŷ′ θapp

θo

)
κy

]
× exp (−j2koz′κz) . (5.29)

Equation (5.29) is nearly identical to the traditional Backprojection PSF given by

Equation (2.86) in Section 2.2.2. In Equation (5.29), exp (−j2koz′κz) only contributes

a constant phase across the integral and, with no effect on final pixel magnitude, is

eliminated as before. Setting y′ = ŷ′ yields the range PSF

PSFFDArange = ρr̄′

∫
θapp

dθapp exp [−j2kc (x′ − x̂′)κx] . (5.30)

This PSF has the same form as Equation (2.101) and again the backprojection algo-

rithm provides no range information. Setting x′ = x̂′ yields the cross-range PSF

PSFFDAcross range = ρr̄′

∫
θapp

dθapp exp

[
−j2kc

(
y′ − ŷ′ θapp

θo

)
κy

]
. (5.31)
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Table 5.2: Frequency progression is reduced by an order-of-magnitude as compared
to Table 5.1 in order to observe the change in θapp. N is increased by a proportional
amount to ensure system bandwidth and center frequency remain constant.

Parameter Value
Number Azimuth Elements (N) 450
Number Elevation Elements (P ) 1
Base Operating Frequency (fo) 10 GHz

Center Frequency (fc) 10.44 GHz
Azimuth Frequency Progression (∆fy) 2 MHz

Waveform Bandwidth 900 MHz
L 430 m
Lapp 430 m

5.2.3 Simulation Results. Simulation is performed to empirically validate

the approach proposed in Section 5.2.2. Through the remainder of this chapter, a se-

ries of three plots are used to show results for each simulation. The first plot displays

the actual and apparent synthetic apertures. Blue O symbols represent actual collec-

tion location while red X symbols represent mapped collection locations. The second

plot shows the reconstructed image when backprojected from the apparent synthetic

aperture. The final plot highlights the center target, Target #6 in Figure 2.11, in

order to show any effects on the PSF. The green dashed lines on center target plots

outline theoretical range and cross-range resolutions of δx = δy = 0.167 m.

As a baseline, the mapping technique is applied to the scenario in Figure 2.11

with parameters used in Table 5.1. Recall that traditional backprojection produced a

defoused image as shown in Figure 5.1. The apparent synthetic aperture and recon-

structed image are shown in Figure 5.3. By creating the apparent synthetic aperture

from which backprojection is performed, a focused image is produced. The first nulls

of the PSF coincide with the theoretical range and cross-range resolutions outlined

by the green dashed lines.

It is shown in Section 5.2.1 that θapp varies inversely with ∆fy. Thus decreas-

ing the frequency progression should yield a corresponding increase in apparent view

angle. Simulation is performed with a modified set of FDA parameters shown in Ta-
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Figure 5.3: Blue O symbols represent actual collection location while red X symbols
represent mapped collection locations. By creating the set of apparent collection loca-
tions from which backprojection is performed, the backprojection algorithm produces
a focused image. The green dashed lines on center target plots outline theoretical
range and cross-range resolutions.

Figure 5.4: The effect of reducing frequency progression by a factor of 10 can be seen
on the apparent synthetic aperture locations. The increased θapp maps each actual
collection location in the negative cross-range direction, though the overall length of
the aperture is unchanged.

114



ble 5.2 to observe the effect of a smaller frequency progression on both the apparent

synthetic aperture locations and reconstructed image. While the frequency progres-

sion is decreased by an order-of-magnitude to ∆fy = 2 MHz, it is noted the number

of azimuth elements N are correspondingly increased by the same factor to N = 450.

This change is performed to ensure system bandwidth given in Equation (4.18) and

center frequency from Equation (4.6) remain constant and do not alter image resolu-

tion. However, the greater number of elements N does increase the physical antenna

size.

The apparent synthetic aperture and reconstructed image are shown in Fig-

ure 5.4 when ∆fy = 2 MHz. The increased θapp maps each actual collection location

in the negative cross-range direction per Equation (5.14), though the overall length

of the aperture is unchanged as noted by the observed Lapp = L given Table 5.2. The

apparent synthetic aperture properly accounts for the drastic decrease in frequency

progression and a focused image is produced. Image resolution remains unchanged.

In simulations performed thus far, a positive frequency is applied across the

physical aperture. It is of interest to study the effect of inserting a negative frequency

progression across array channels. Simulation with the parameters shown in Table 5.2

is performed once again, with the exception that ∆fy = −2 MHz. Figure 5.5 shows the

resulting apparent synthetic aperture and reconstructed image. Each actual collection

location is mapped in the positive cross-range direction. Once again, the length of the

actual and apparent synthetic apertures are the same. The new apparent synthetic

aperture properly accounts for the new frequency progression and a focused image is

produced, and image resolution remains unchanged.

5.3 Improving Cross-Range Resolution

Section 5.2.3 aimed to validate the proposed methodology of Section 5.2.1.

Through the scenarios presented, use of the apparent synthetic aperture for image

reconstruction effectively compensated for the azimuth dependent PSF. Backprojec-
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Figure 5.5: The effect of a negative frequency progression can be seen on the apparent
synthetic aperture locations. The computed θapp maps each actual collection location
in the positive cross-range direction, though the overall length of the aperture is
unchanged. The new apparent synthetic aperture properly accounts for the new
frequency progression and a focused image is produced.

tion from the modified locations produced focused images with the theoretical range

and cross-range resolutions of δx = δy = 0.167 m per parameters in Table 5.1 and

Equation (2.1) and Equation (2.3). Waveform bandwidth is intentionally held con-

stant across the various scenarios and lead to a consistent range resolution. It is

observed that although the mapping produced an apparent synthetic aperture, the

length of the new aperture and the actual aperture were approximately equal and

cross-range resolution remained unchanged.

5.3.1 Modified FDA Operation. From Equation (5.14) and Figure 5.4, a

positive frequency progression produces an apparent synthetic aperture shifted in

the negative cross-range dimension. A negative frequency progression produced the

opposite effect as seen in Figure 5.5. Given the capability to map individual collection

locations, it is proposed that FDA processing can increase apparent synthetic aperture

length Lapp and therefore improve cross-range resolution through a modified concept of
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operations. Assuming the airborne collection platform flight path is along the cross-

range axis from negative to positive, +∆fy is first used in the FDA. Thus, actual

collection locations are projected back as in Figure 5.4. At the point where radar

boresight crosses scene center, i.e., when the target area is perfectly broadside, the

FDA reverts to a negative frequency progression of −∆fy. Actual collection locations

are then projected forward as in Figure 5.5.

An important consideration in the proposed approach is selection of base fre-

quency. It is shown in Equation (4.6) that FDA center frequency is

ωc = ωo +

(
N − 1

2

)
∆ωy , (5.32)

and so

fc = fo +

(
N − 1

2

)
∆fy . (5.33)

Simply changing the frequency progression from +∆fy to −∆fy at the center of the

synthetic aperture causes the corresponding two subsets of the phase history to have

differing center frequencies per Equation (5.33). For example, in Table 5.2 center

frequency is shown to be fc = 10.44 GHz. A frequency progression ∆fy = −2 MHz

changes the center frequency to fc = 9.55 GHz. When performing backprojection,

pulse returns from each subset of the phase history will add incoherently corrupting

the final image.

This challenge can be alleviated by changing the base frequency in conjunction

with frequency progression. At the start of data collection, the reference element

transmits at fo while element (N − 1), i.e., the element furthest from the reference,

transmits at

f(N−1) = fo + (N − 1) ∆fy , (5.34)

with center frequency given by Equation (5.33). At the point frequency progression

is switched from positive to negative, the reference element operating frequency is set
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to f ′o = f(N−1) with corresponding FDA center frequency

fc = f ′o +

(
N − 1

2

)
(−∆fy)

= [fo + (N − 1) ∆fy]−
(
N − 1

2

)
∆fy

= fo +
(N − 1)

2
∆fy , (5.35)

and is the same as Equation (5.33). A common center frequency is established across

the phase history while achieving the desired mapping of collection locations with the

change in ∆fy.

Three scenarios are considered to evaluate performance of the proposed proce-

dure. Two scenarios consider the parameters in Table 5.1 and Table 5.2 with N = 45,

∆fy = ±20 MHz and N = 450, ∆fy = ±2 MHz respectively. One intermediate

scenario with N = 225, ∆fy = ±4 MHz is used to provide an intermediate data

point. Once again, waveform and collection parameters are set for equal range and

cross-range resolution of δx = δy = 0.167 m. The results of processing are shown in

Figure 5.6 to Figure 5.8.

Figure 5.6 displays the results of the baseline FDA case with N = 45, ∆fy =

±20 MHz. The apparent synthetic aperture is no longer continuous and the observed

length is Lapp = 445 m, an increase of 3% over the actual L = 430 m. Lapp is computed

as the cross-range difference between the first and last apparent collection locations.

Though in theory a proportional improvement in cross-range resolution should be

observed, the small difference is not visible on the scale presented. One artifact that

is observed is an increase in peak sidelobe level (PSL), most noticeable in the Target

#1 to Target #3 and Target #11 to Target #13 responses (reference Figure 2.11).

The next two scenarios will show the trade-off presented between finer cross-range

resolution and increased PSL.

Decreasing the magnitude of ∆fy by a factor of five, Figure 5.7 displays the

results of N = 225, ∆fy = ±4 MHz. The apparent synthetic aperture is discontinuous
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Figure 5.6: Results of processing an expanded synthetic aperture baseline using N =
45, ∆fy = ±20 MHz. The apparent synthetic aperture is no longer continuous and
exceeds the actual aperture by 3%. A corresponding increase in cross-range resolution
is not observed on the scale shown and an increase in peak sidelobes is noted.

Figure 5.7: Results of processing an expanded synthetic aperture baseline using N =
225, ∆fy = ±4 MHz. With Lapp = 502 m, cross-range resolution is improved at the
cost of peak sidelobe level.

119



Figure 5.8: Results of processing an expanded synthetic aperture baseline using N =
450, ∆fy = ±2 MHz. With Lapp = 574 m, cross-range resolution is further improved
as compared to Figure 5.6 and Figure 5.7, at the cost of peak sidelobe level.

with a region in the center entirely omitted. With Lapp = 502 m, an increase of 17%

over the actual aperture length, and using small angle assumptions,

∆θapp ≈
Lapp
Rc

, (5.36)

the new expected cross-range resolution is δy = 0.143 m. The first nulls in cross-range

PSF of center target in Figure 5.7 occur within the theoretical values (green dashed

box), and indicates finer cross-range resolution consistent with the new expected value.

The PSL is more pronounced.

In the final simulation, the FDA uses N = 450, ∆fy = ±2 MHz with results

shown in Figure 5.8. With the large region of no effective phase history, the apparent

synthetic aperture can be interpreted as two distinct apertures. The observed Lapp

is 574 m, a full 33% increase over the baseline, and the new expected cross-range

resolution is δy = 0.125 m. The finer cross-range resolution is observed in conjunction

with further elevated PSL.
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Figure 5.9: The cross-range PSF for Target #6 at scene center is shown for four
(N,∆fy) pairs as indicated. The improvement in cross-range resolution, as given by
the first nulls, and increase in PSL is seen with decreasing frequency progression.

5.3.2 Resolution Improvement and PSL Trends. The FDA model developed

in Chapter IV and FDA processing proposed in Section 5.3 allow continued analysis of

varying ∆fy while noting effects on apparent synthetic aperture, image reconstruction,

resolutions, etc. A main concern of a any SAR system is interpretability of resulting

images. Fine resolution is desired to provide more detail, while sidelobe level must

be kept low to prevent strong scatterers from masking adjacent weaker scatterers. It

is of interest then to establish trends of improvement in cross-range resolution and

increase in PSL.

In Figure 5.9, the cross-range PSF for Target #6 at scene center is shown for

four (N,∆fy) pairs as indicated. The improvement in cross-range resolution, as given
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by the first nulls, and increase in PSL is seen with decreasing frequency progression.

The plots in Figure 5.9 represents snapshots of the effect of ∆fy on the PSF. In

order to characterize the cross-range PSF attributes of resolution and PSL trends

are shown in Figure 5.10 and Figure 5.11 respectively. This data and signal models

developed under this research allow designers to optimize system design to suit specific

operational requirements.

Figure 5.10 shows the improvement in cross-range resolution δy against ∆fy.

Note a logarithmic x-axis is used to show two orders-of-magnitude change in ∆fy.

Observed δy on the y-axis is normalized to the baseline δy = 0.167 m resolution. A

smaller observed δy corresponds to finer resolution, and a smaller normalized value is

desirable. When the frequency progression is high, on the far right of the figure, little

change in observed δy is noted as ∆fy decreases from 100 MHz to 10 MHz. How-

ever, between 10 MHz and 1 MHz the cross-range resolution is drastically improved.

Though these results seem promising, the data in Figures 5.11 show the penalty paid

in PSL. The Figures 5.11, PSL is referenced to the maximum target response giving

the peak sidelobe level ratio (PSLR). At ∆fy = 100 MHz, PSLR = −13 dB is noted

and this level is common in SAR. The PSLR degrades the cross-range PSF, especially

between 10 MHz and 1 MHz.

5.4 FDA SAR Limitations

Limitations exist on the applicability for both FDA SAR processing techniques

presented in Section 5.1 and Section 5.2. First, physical and hardware restrictions

limit FDA size. In Section 5.2, trend analysis is performed for ∆fy = 100 MHz to

∆fy = 1 MHz. In order to satisfy the constant bandwidth constraint, the number

of azimuth channels varied accordingly from N = 9 to N = 900. With inter-element

spacing dy fixed at λc/2 = 0.14 m, the array physical size increases from D = 0.12 m

to D = 12 m and may not be be feasible for airborne systems. Additionally, strict

restrictions are placed on associated hardware for each channel to operate precisely
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on the assigned transmit frequency for the duration of the CPI. Clearly, this task is

difficult for large arrays.

Next, recall small angle assumptions are used throughout the analytical devel-

opment. Caution is required with any increase in θo to obtain a longer actual synthetic

aperture, or corresponding θapp, to achieve a longer apparent aperture. Such changes

require that small angle assumptions be reverified.

Finally, the phase term in Equation (5.22) cannot be corrected for all possible

scatterers in the scene. This limitation restricts the scene size over which the proposed

processing can be applied. Targets at or near scene center appear most focused while

those at increasing distances are more defocused. The extent of target defocusing

depends on the difference between θo and θapp and target distance from the scene

center.
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Figure 5.10: Little change in observed δy is noted as ∆fy decreases from 100 MHz
to 10 MHz. However, between 10 MHz and 1 MHz the cross-range resolution is
drastically improved.
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Figure 5.11: The PSLR degrades the cross-range PSF with decreasing ∆fy. The
change is especially drastic between 10 MHz and 1 MHz.
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VI. Conclusion

6.1 Research Summary

This research establishes a generalized formulation for applying waveform di-

versity to SAR. Though a majority of the effort focused on frequency diversity, the

unique geometrical framework emphasizes three-dimensional data collection and en-

ables the development of SAR signal modelling and imaging within the context of

waveform diversity. A vector construct is used throughout the mathematical develop-

ment as common across many disciplines. This presentation allows those unfamiliar

with radar to better understand waveform diversity in the context of SAR.

Analytical formulation of the planar FDA extends previous work by considering

a 2-D planar array with frequency progression across both dimensions. The capability

to continually scan in azimuth and elevation, where scan periods are controlled solely

by horizontal and vertical frequency progression, may have application beyond con-

ventional spotlight SAR. Potential applications include stripmap SAR, GMTI, wide

area surveillance, and STAP. The analysis and models developed under this research

directly aid further study of FDA application to radar.

FDA pattern analysis enabled the development of a novel technique for pro-

ducing a wideband, widebeam waveform through the use of an FDA. The wideband

nature is not achieved through common approaches using complex radar hardware,

phase coding, and/or pulse compression techniques. Rather, wideband performance

is realized through simultaneous transmission of frequency offset sinusoidal tones.

The frequency band coverage is easily scalable through the addition/removal of ar-

ray elements without requiring redesign of waveform generators and other associated

hardware. Though the FDA technique is addressed in the context of SAR imaging, a

variety of radar applications may benefit from this new capability.

The FDA waveform is applied to SAR imaging through only minor modification

of the existing backprojection algorithm. Two techniques were analyzed in applying

the FDA waveform to SAR imaging. In the first method, a simple time and phase

correction produced a focused SAR image with resolutions consistent with theoretical
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values. This alone is a benefit as the new capability extends wideband waveforms

available for SAR applications, with the advantage of simplicity in waveform genera-

tion and scalability to wider bandwidths.

The second approach exploits unique properties of the FDA waveform to im-

prove cross-range resolution in SAR imagery. The creation of an apparent synthetic

aperture from which backprojection is performed is a novel approach for enhancing

SAR image resolution. Through manipulation of FDA frequency progression, tar-

get responses at individual collection locations are mapped to apparent collection

locations. The synthesized apparent aperture is longer than the actual aperture and

yields superior cross-range resolution. Though limits are placed on application of the

proposed processing, this research represents an critical step in focusing attention on

applying waveform diversity to improve cross-range resolution. For many years, efforts

in waveform diversity have been directed at improving range resolution. However, the

additional collection time required to achieve adequate cross-range resolution that col-

lection platforms and aircrews unnecessarily exposed to hostile forces. As addressed

here, FDA SAR processing aims to decrease the amount of time that Air Force per-

sonnel and equipment are in harm’s way. The importance of this research has been

recognized by the military community [20], the electromagnetics community [21], and

the radar community [22],.

6.2 Suggestions for Further Research

Beyond frequency diversity, waveform diversity concepts could be studied us-

ing the constructs provided in Chapter II. Section 3.4.1 identified the conceptual

similarity between stepped-frequency and FDA waveforms, the difference being the

temporal versus spatial application of the frequency step. Similarly, the development

in Chapter III can be extended to include other frequency-coded waveforms, e.g.

Costas codes. These codes are popular and have nearly ideal range and doppler side-

lobe behavior in the ambiguity function presented in Section 4.3 [33]. Costas codes

are similar to the stepped-frequency waveform, except pulse coding is not based on
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incremental frequency progression. Instead, frequency selection is based on Costas

arrays designed for optimal ambiguity function behavior. When applying frequency

assignment across the physical aperture, the associated array pattern can be derived

using Equation (3.35)

sT (t, r̄′, r̄o) =
N−1∑
n=0

P−1∑
p=0

exp [jωnp (t− to)] exp
(
jk̄np · d̄np

)
exp

(
−jk̄np · r̄′

)
, (6.1)

where ωnp (and therefore k̄np) is based on the chosen Costas code.

Alternatively, FDA parameters can be modified to provide array directivity. In

Chapter IV, the FDA is shown to illuminate all azimuth angles. This may or may not

be a desirable attribute for some radar applications. This limitation is easily overcome

using subarrays, whereby elements in the N × P physical aperture are grouped into

R × S subarrays, each of which acts as a CFA and can be steered to a particular

azimuth and elevation angle. Instead of applying the frequency progression across

elements in the traditional FDA fashion, the frequency progression can be applied

across the subarrays. In this case, the modified aperture retains FDA functionality

while gaining directivity.

Collection geometries beyond broadside SAR using linear flight paths may be

of interest to study. The geometrical framework presented accommodates study of

squinted geometries and/or arbitrary flight paths. Important research areas, like cir-

cular SAR, can effectively be addressed using the tools developed under this research.

Additionally, this research exploited FDA patterns when only a horizontal frequency

progression is present. The analytical models enable potential exploitation of vertical

frequency progression which may help alleviate adverse 3-D SAR effects (like range

layover) or help analyze a 3-D PSF behavior.

Lastly, scene sizes in Chapter V were intentionally limited to keep simulation

times manageable. It is of interest to observe the proposed FDA SAR operations

on larger scenes. One tool readily available to support such an investigation is the
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Research Lab Space-Time Adaptive Processing (RLSTAP) simulation. With the high

fidelity radar hardware models and ability to generate complex signal data based on

real-world terrain data, RLSTAP may be the ideal tool for analyzing FDA SAR

performance on extended targets.
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